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Abstract

This paper develops an approach to problems of wave diffraction that combines the physical clarity of the ray method
with the versatility of direct numerical methods. First it addresses scalar problems with general linear first-order
boundary conditions, and then it considers problems formulated in adjacent domains with imposed interface condi-
tions. We start by following closely the scheme of the ray method, but instead of looking for approximate expressions
for the amplitudes of the Liouville decomposition we obtain their exact representations as the mathematical expecta-
tions of some functionals on the space of Brownian trajectories. The obtained solutions provide direct improvements of
the ray method approximations to the exact solutions, and they are shown to admit efficient numerical evaluations.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many problems of continuum mechanics are effectively approached today by direct numerical methods
that one way or another reduce the problems to systems of algebraic equations. There are however areas
such as wave propagation where such techniques remain ineffective. The nature of wave propagation
phenomena reduces the efficiency of most conventional direct numerical techniques but it is often possible
to use simple and physically meaningful asymptotic methods.

One of the most efficient tools for analysis of wave propagation is the ‘geometrical theory of diffraction’
or the ‘ray method’, whose adaptations to specific areas are also known as ‘geometrical optics’, ‘geometrical
acoustics’, ‘geometrical seismology’, etc. These methods are based on representations of wave fields in the
Liouville form > ¢, (x)e™"™¥), where the eikonals S, (x) are associated with the rays and the amplitudes ¢, (x)
admit physical interpretatlons of quantities transported along the rays. The success of the geometrical
theory of diffraction is secured by the existence of the canonical procedure to determine the eikonals S, (x)
and by the fact that in many practically important cases there exist simple asymptotic approximations for
the amplitudes ¢,(x). In general, however, these amplitudes are defined by partial differential equations
which have neither exact nor approximate analytic solutions and are difficult for direct numerical analysis.
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Here we develop an approach to problems of wave propagation combining the physical clarity of the ray
method with the versatility of direct numerical methods. We start our analysis following closely the scheme
of the ray method, but instead of looking for approximate expressions for the amplitudes of the Liouville
representations we obtain their exact values as the mathematical expectations of some functionals on the
space of Brownian trajectories. The obtained solutions provide direct improvements of the ray method
approximations, and they are shown to admit efficient numerical evaluations.

The first probabilistic solutions of partial differential equations were obtained in the 1920s (Philips and
Wiener, 1923) as a result of the analysis of the Laplace equation by the finite difference scheme. Rapid
progress in the development of probabilistic methods in partial differential equations was made in the
1950s, after the publication of landmark papers of Feynman (1942, 1948) and Kac (1949).

These theories have a long record of successful applications to numerical simulation of evolutions of
quantum systems, and quite recently attempts have been made to apply path integral methods to acoustics
(Schlottmann, 1999) and electromagnetics (Nevels et al., 2000). Probabilistic methods have also been ap-
plied to steady flow computations (Hunt et al., 1995) and these methods are increasingly used for analysis
of geophysical wave propagation (Bal et al., 1999, 2000). In Bal et al. (2000) and Papanicolaou (1998) the
competitiveness of probabilistic methods in wave propagation is discussed, and in Bal et al. (1999, 2000)
such methods are used to study the transport of energy by waves propagating in random media. Such
transport is described by first-order differential equations and a probabilistic method is developed in those
papers for their analysis. Here, instead, we deal with problems in non-random media but employ proba-
bilistic methods for the analysis of the second-order auxiliary equations whose first-order components are
also known in ray theory as transport equations.

The basic ideas of our approach to problems of wave propagation are outlined in Budaev and Bogy,
2001, 2002) where the model problems with Dirichlet boundary conditions were discussed. Here we also
take into consideration problems with general linear first-order boundary conditions and problems for-
mulated in adjacent domains with imposed interface conditions.

Section 2 focuses on the fundamental notions underlying the application of random walk methods to
partial differential equations. Results presented in the first part of the section are rather standard but are
included to make the paper self-contained and to provide the necessary background for understanding what
follows. The rest of this section addresses the application of random walk methods to boundary value
problems. We first discuss the notion of Brownian motion with reflections and then represent solutions of
problems with linear first-order boundary conditions by a probabilistic formula averaging random walks
with reflections. This material is also not new, although it is presented in a non-standard form which, we
believe, better suits our needs. In particular, in addition to a concept of ‘local time’ at the boundary, widely
used in the literature, we introduce a ‘local time in the domain’, which makes some important formulas
more transparent. Finally, we introduce random walks in domains that comprise two adjacent domains and
employ the developed technique to solve problems with imposed interface conditions. We are not aware of
other works reporting applications of probabilistic methods to problems of this type, although, from the
point of view employed here, such problems are just special cases of problems on a single domain. The
discussed material is illustrated by two numerical examples.

Section 3 focuses on the application of the random walk method to the Helmholtz equation. First, this
equation is reduced to a complete transport equation defined through the eikonal which can always be
computed by the canonical Hamilton—Jacobi technique. Then the transport equation is treated by the
methods discussed in the previous sections and the obtained probabilistic solution is converted to a form
that may be considered a direct improvement of the well-known ray method approximation to the exact
solution of the Helmholtz equation. To provide an indication of the efficiency of the probabilistic solutions
of the Helmholtz equation we consider three illustrative examples. First we recover the Hankel function by
considering it as a solution of the Dirichlet problem for the Helmholtz equation outside a circle of radius as
small as 3% of the wavelength. Next we simulate the solution of the Sommerfeld diffraction problem in a
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wedge with Dirichlet boundary conditions. Finally, we compute the reflection and transmission coefficients
of plane waves incident on the interface separating two half-spaces with different wave speeds.

It should be emphasized that all of the numerical examples considered in the paper are selected solely for
illustrative purposes. We attempted to choose the simplest problems whose probabilistic solutions employ
the discussed techniques, and we do not claim that the probabilistic solutions of these problems are
preferable to solutions delivered by any other method. It is expected that the demonstrations provide
convincing evidence that the methods employed will be applicable to more complex problems for which
other methods fail. We will address these problems in future papers.

2. Probabilistic solutions of differential equations
2.1. Random motions in the entire space

Let a particle start a random walk on the real axis —oo < x < oo from the point x = 0 and jump at the
instants #; < t, < t3 < - -+, the distance ¢ in either of two equally probable directions, as shown on the left
diagram of Fig. 1. The particle’s position x, on the time interval [¢,,7,,) prior to the (n+ 1)-th jump is
represented as a sum x, = y ._; Ax, of independent random variables Ax, = ¢ with two equally possible
values.

Assume that the instants 7, are equally spaced and that z, = nAr. Then the sequences x, and ¢, determine a
piecewise constant function w; = xj/»,, Where 7= t/At, is the last instant of the series #, preceding or co-
inciding with z. It is well known (Dynkin, 1965; Wiener, 1923) that if the time and space meshes decrease
together such that Ar = ¢ — 0, then the jump-motion W, converges in some sense to a continuous random
motion w, which is usually referred to as the one-dimensional Brownian motion or, equivalently, as the one-
dimensional Wiener process. The N-dimensional Brownian motion in R" is defined as a superposition of
one-dimensional Brownian motions (see the right diagram of Fig. 1). Let w, = (w!,w?, ..., w") be a path in
R"Y whose Cartesian coordinates are independent one dimensional Brownian motions. Then , is said to be
the Brownian motion, or the Wiener process in R".

A striking property of the Brownian motion is that it is closely related with partial differential equations.
For instance, an N-dimensional elliptic equation

V2% — By +F =0, (2.1)

can be explicitly solved by the expectation

50% @ 50% 2% 25%
t
O—@— O
—€ €
A particle spends time At = €2 at each current location w; and —€
then instantly jumps on the vector Aw = (+e,te,..., Fe).
The average single displacement vanishes, i. e. E(Aw) =0, but
E(||Aw||?) = eV'N, where N is the space’s dimension.
25% 25%

Fig. 1. Discrete Brownian motion.
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o0 —£{ [T r@e brEval, 22)
0
where the averaging is extended over all the Brownian motions

E=x+, (2.3)

launched from the observation point. Solution (2.2) is widely known in the literature as the Feynman-Kac
formula, and in Simon (1979) one may find a long list of papers providing different proofs of this formula
employing different ideas and applying different hypotheses on the coefficients B, F. For our purposes it is
enough to mention that if B and F are smooth and B > 0, then the mathematical expectation in (2.2) exists
and presents a solution of the Eq. (2.1).

Eq. (2.1) is not the only one that can be explicitly solved by averaging over trajectories of random
motions. In particular, a more general equation

V% +4-V—Bp+F =0, (2.4)

can also be solved by the formula (2.2), but the averaging in this case has to be extended over trajectories of
Brownian motions with a drift, which is discussed below.

Let 4 (x) be a vector field on RY, and let Ef be a random motion (stochastic process) in R" launched from
x and defined as a superposition

E=C+w, &=x (2.5)

of the N-dimensional Brownian motion w,, wy = 0, and of the motion Zf controlled by the ordinary dif-
ferential equation

Se=i(z)=a(t+w),  G=x 20)

whose right-hand side depends on the Brownian motion ;. It should be emphasized that although both
motions w; and {; are random, they are not independent, because any particular Brownian path w, com-
pletely determines the component C

The geometrical meaning of the motion é becomes clear from the estimate

A& = A(E) A+ +o(Ar),  AE=En-C, 2.7)

which follows from (2.5) and (2.6) and states that on a short time interval from 7 to 7 4+ A¢ the increment AE,
consists of a random move w,, and of a deterministic move A{, = 2(5;‘ )At. Due to this interpretation,
illustrated on Fig. 2, random walks described by (2.5) and (2.6) are usually referred to as Brownian motions
with a drift or, equivalently, as Wiener processes with a drift. Passing in (2.7) to the limit At — 0 we obtain
a stochastic differential equation

A particle spends time At = €2 at each current location & and
then instantly jumps on the vector A{ A(ft)At+wm, whose
first component A({t)At is deterministic, while the second com-
ponent wa, = (+e,+e) is a random Brownian jump.

As € € 1, the random component wa¢ dominates in the total
single displacement estimated as A€ = (e, +e) + O(e?). How-
ever, the mathematical ezpectation of the random component
vanishes and the average dlsplacement in time At 1s estimated

as E(€a;) = A(&)At = A(&;) €2

Fig. 2. Discrete Brownian motion with a drift.
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dZ = dw, 4+ 4dt, & =, (2.8)

which provides a well known way (Dynkin, 1965; Ito and McKean, 1974) to analyze random motions with
a drift.

Since any positive-definite second order differential equation can be represented in the form (2.4) any of
these equations can be solved by the probabilistic formulas (2.2). This solution, however, can be extended
to more general equations, such as degenerate elliptic equations including parabolic equations.

Let D(x) be an N x N matrix function in R" and let A(x) be a vector field in RY. Then, the random
motion E’t‘ determined by the equations

E=L4Dw W, T=A(E), L=x (29)
may be viewed (see Fig. 3) as an asymmetric Brownian motion with a drift (Dynkin, 1965; Ito and McKean,
1974). The asymmetric motion defined by (2.9) is related to the partial differential equation

Dp+A4-V—Bp+F =0, (2.10)
in which the second order operator D is defined as

Dp=3 Z mnaxmaxn Z Dy, (2.11)

m,n=1 j=1

where Dy, are the elements of the matrix D from (2.9) and, therefore, C,,, are the elements of the symmetric
matrix C=D-D". Equations of the type (2.10) and (2.11) admit explicit solutions by formula (2.2) with
the averaging over random walks satisfying (2.9), and this solution remains valid independently of the rank
of the matrix D.

Consider, for example, the case D =0. Then, (2.9) degenerates to a deterministic dynamical system
d& = Ads which results in paths d&; that do not have random components. Therefore, the sign of the
mathematical expectation in (2.2) can be dropped and the solution has the form

d(x) = /0 F(g’f)e*ﬂﬂ(fﬁ“dt, A& =A4dr, & =,

which is an obvious solution of the first order equation 4. ﬁ¢ —Bp+F=0.
The above considerations can be straightforwardly extended to equations with complex coefficients. For
instance, consider the complex equation

%v2¢+2-v*¢—3¢+1~“=0, (2.12)

with N independent real variables xj,x,, ..., xy, considered as the Cartesian components of the N-dimen-
sional real vector ¥. Let ¢(z) be an analytic function of a complex N-dimensional argument Z = ¥ + ij.

A particle spends time At = g2 at each current location {t and then
instantly jumps on the vector AE = A(£)At + D(Et) wa¢, whose
first component A(£;)At is deterministic, and the second component
is a Brownian jump wWa, transformed by the matriz ﬁ(é)

If D = 0 this is the deterministic motion along _./i‘. If D =
diag(1,0,...,0] this is the deterministic drift along A perturbed by
random fluctuations in the direction along the azis ;.

At =¢€?

Fig. 3. Discrete asymmetric Brownian motion with a drift.
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Then, ¢(Z) can be treated as a complex-valued function ¢(¥,¥) of two real vectors ¥ and ¥ satisfying
Cauchy-Riemann conditions

@ﬁb e
Gx,, oy,

Z, =X, +1y,, n=12...,N, (2.13)

where x, € R and y, € R are the components of ¥ and y. From (2.13) we derive identities

2 2 2 2
Yo_ T T _ 09 Z (2.14)
Ox? 0y? Ox,,0y, Ox2 ax2 6x,,6yn
and
0 o¢p . 0¢ 0 0
— = Re(4 Im(4 = Re(4,) — + Im(4,) — 2.1
A”axn e( ”) axﬂ+1 m( ”)axn C( 71)axn+ m( ") ayn ( 5)
which result in the representation of the Eq. (2.12) in the form
1L 3% N o o
3 Z: o ; {Re(A,,) a Im(4,) |~ Bp+F =0, (2.16)

i.e., the standard second-order differential equation with 2V independent variables.

Eq. (2.16) matches the structure of the Eqgs. (2.10) and (2.11) with 2N real variables and, therefore, its
solution can be obtained as the mathematical expectation (2.2) averaging 2N-dimensional random walks of
the type (2.9) with the matrix D determined by the second order component of the Eq. (2.16) as defined by
(2.11). An elementary analysis shows that D has the rank N and that the above mentioned random walks
are described by the equations

Re(d) = + Re(i)dr,  Im(dE) = \%w, FIm(A)de, € RY, (2.17)

where #, is the standard Brownian motion in the N-dimensional real space R". In complex notation,
solutions of stochastic equations (2.17) take the form

—. -

g=vViw+{, where —[=4(&), §=x (2.18)

E:\O-

and this leads to the conclusion that the analytic solution ¢ of (2.12) can be represented by the formula (2.2)
with the paths (2.18) running across the complex space C" even while their Brownian component W, re-
mains real-valued. This concluswn is based on the hypothesis that the solution ¢ of (2.12) is analytlc while
the analyticity of the coefficients 4, Band Fis not formally required. However, if we assume that 4, Band F
are analytic, then we may derive the analyticity of ¢ defined by (2.2) and (2.18), and, therefore, justify that
¢ solves Eq. (2.12).

Eq. (2.12) may also be considered (Simon, 1979) as a time independent Schrodinger equation in the
presence of a magnetic potential, which leads to the solution of (2.12) represented by means of Feynman’s
path integrals. This solution does not require analyticity of the coefficients 4, Band F, but it is more difficult
for numerical evaluation than the probabilistic solution (2.2) averaging complex random walks (2.18).
However, if Z, B and F are analytic, then the contour deformation technique discussed in Chang and Miller
(1987) makes it possible to convert Feynman’s integrals solving (2.12) to probabilistic formulas (2.2) and
(2.18).
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2.2. Random motions in domains with boundaries

It is remarkable that the probabilistic approach can be extended from partial differential equations like
(2.2) in the entire space to boundary value problems

%V2¢+Z-ﬁ¢—3¢+FG:O, a.v*¢—b¢+fﬁ6:0, (2.19)

formulated in a domain G C R" with the boundary 9G. Coefficients A, B and F are assumed here to be
defined inside G, while the coefficients @, b and f are defined on 0G. Additionally, for definiteness, we as-
sume that vectors 4 are oriented inwards toward G.

Applications of random walk methods to problems (2.19) are based on the idea of defining ran-
dom walks (stochastic processes) on the closure G UG whose behavior inside G corresponds to the op-
erator Lg =1V? +A V — B, and whose behavior on the boundary OG corresponds to the first-order
operator Log = a - V — b. Since both operators Lg and Ly are particular cases of the general second-order
operator discussed in the previous section, it is natural to expect that inside G the random walk should look
like a Brownian motion with a drift associated with the vector fields 4, and on the boundary 9G it should
look like a deterministic motion along the vector d. This idea can indeed be carried out but attention is
needed to the continuity of the total motion, which may be violated if the time scales of the motions in G
and 0G are not properly coordinated.

To see the origin of the problem with the speed coordination consider first the motion inside G. It is
composed of the standard Brownian motion w, and of the deterministic drift {(r) whose speed-vector A
is uniquely determined because it comes from Eq. (2.19) normalized to the coeflicient % in front of the
Laplacian. On the contrary, the boundary condition in (2.19) does not have a preferred normalization the
result of which is that the vector d determines only the direction of the motion at the boundary 0G but
applies no restriction on its speed.

Stochastic processes ff corresponding to the problem (2.19) are known as reflecting random motions and
they can be introduced as continuous solutions of the stochastic differential equation

d& =dw,+A dA, +adh, E=x, =0, (2.20)

with an additional unknown /,, which is required to be a continuous non-decreasing stochastic process
increasing only on the ‘visiting’ set g = {¢ : £, € 0G} of instants when the path ¢, touches the boundary 0G.
The process 4, is called the ‘local time at dG” because it admits interpretation as the measure of the time
spent by the path &, on the boundary 0G. As for A, it is defined here as the Lebesgue measure of the set
G={s:0<s<t, ¢ € G} and, correspondingly, we call 4, the ‘local time in G’.

Stochastic differential equations of the type similar to (2.20) were introduced by Skorokhod (1961), and
Watanabe (1971) used such equations for analysis of general boundary value problems. The ‘local time’ A,
on the boundary is extensively discussed in Ito and McKean (1974), where, in particular, it is proven that if
d # 0 then the Lebesgue measure of the visiting set g = {¢: & € 0G} is equal to zero. This observation
makes it possible to re-write Skorokhod’s equation in the form (2.20), which is more convenient because it
treats similarly the domain G and its boundary 0G.

Continuous random motions corresponding to the boundary value problem (2.19) can be approximated
by discrete random walks

EOHEI_’EZ_”"_)En—l_’En_"" (2-21)

whose individual steps are defined differently depending on the location of their initial positions with re-
spect to the boundary 0G. If &,_; is located inside G and its distance from 0G exceeds ¢ then the walk spends
at this point the time A¢, = ¢ and then moves to the next random point
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E =C,  +AE, )AL, + W, where W,=(Le +¢,...,+e), A, =&, (2.22)

which is defined by a deterministic move A (E;H)éf and a random jump along a vector w, with 2N equally
probable values. Otherwise, the walk spends at &, ; the time

=/ Je )

where fn,l is the point on 0G closest to fn,l, and then moves to the non-random point
En = zn—l + Sa(én—l)/ ‘a(gn—l) H (224)

As ¢ — 0 the lengths of the jumps defined by (2.24) and by (2.22) have the same order and this provides
convergence of the process to a continuous random motion. Furthermore, the local times 4, and A, can be
approximated as the limits

A =lim @ N, = tim (o N /()

where Ni; and N¢, are the total numbers of steps of the discrete walk (2.21) determined by the rules (2.24) or
(2.22), respectively.

It is important to emphasize that the described motion, illustrated by the Fig. 4 is random only inside G,
but on the boundary 0G the motion is completely deterministic and determines a shift along the vector field
d defined on 0G.

Since trajectories & cannot visit simultaneously both the domain G and its boundary 0G, it is natural to
introduce global coefficients

- 27 in G . B, in G . F, inG
i {6, on 3G, 7= {b, on 3G, 7= {f, on 9G, (2.25)

) Enfl ~ Enfl € aG7 (223)

which unify the coefficients of the equation and of the boundary condition from (2.19) to functions defined
on G U 0G. Introducing also the global time measure

di, if & €oG
dt, = ¢ ¢4 S ; 2.26
! {d/l,, if & €G, (2.26)

we re-arrange (2.20) into a stochastic equation
d& = dw, + dt,, & =x, (2.27)
similar to (2.8) and then the solution of the problem (2.19) can be expressed in the form

b= [ A @ b, (28)

which may be considered as a direct extension of (2.2). This solution may, certainly, not be valid in all
circumstances, and some restrictions must be applied to the domain G and to other parameters of the

EL oG Inside the domain G a particle performs the Brownian mo-

o tion with a drift, as shown on Fig 2. A particle spends time

= At = €2 at each location and then jumps on a random vec-
a(&e) tor A€ = (Le, e) + O(2).

If the path & hits the boundary G it spends there time
At =¢ . . . At = €, and then is reflected back to G jumping on the
Eerar = &+ a(§) At deterministic vector AE = @(€;)At.

Fig. 4. Discrete Brownian motion with reflections.
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problem. A comprehensive discussion of this topic may be found in Freidlin (1985), so we do not go into
more detail here, assuming that the correctness of the solution (2.28) must be questioned in each particular
case when this formula is used.

It is well-known that the problem (2.19) is not necessarily always solvable and some conditions of
solvability must be imposed. Thus, the Neuman problem in an interior domain G with the boundary
condition 0¢ /0|, = f does not have solutions unless fac f = 0. Such conditions of solvability are natu-
rally included in the probabilistic solution (2.28) as conditions providing convergence of the involved
mathematical expectation.

2.3. Probabilistic solution of the Dirichlet problem

As an instructive example illustrating the solution (2.28) of the general boundary value problem (2.19) we
consider here a simpler Dirichlet problem

Vg +A-Vo—Bo+F| =0, o=/, (2.29)

which is a particular case of (2.19) corresponding to the values @ =0, b = 1.

Since the vector field @ from (2.19) determines the speed of the trajectories 5 on the boundary 0G, the
vanishing of d means that the trajectories stop as soon as they reach the boundary, i.e. é = é for any
t = 1, where the ‘exit time’ (Dynkin, 1965; Ito and McKean, 1974)

t=inf{r: & ¢ G}, (2.30)

may be viewed as the first instant when the path Ef hits the boundary. Then, the local times A, and 4, in the
domain and at the boundary are described as

Atz{t’ t<T, /L:{O, t <1,

T, =1, t—1, t=r1,

and, correspondingly

dr, t<r, _J0, <y
dAf_{O, t>r, d)“’_{dt, t>1.

Taking into account the definition (2.26) of the global time measure t, we re-write solution (2.28) in the
form

d)(x) = E(IF +If),

where

e = P E)e RO, - @ b
L= [ f(E)e h7E%gy, = @ fefo Dt gy

t

Then, assuming that b = 1, we similarly evaluate the integral from the exponents:

min(z,7) .
/ Y dt, _/ d7, +/ - T+/ B(Z)ds
0

where y, is the Heaviside step-function equal to zero for ¢ < 0 and to unity otherwise. Substituting this
result into the expressions for /, and I/r we have
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o= [ @RS =y @) [T IS @ S
0 .
and the solution of the Dirichlet problem (2.29) arrives at its final form
000 = @ BBy [Cr@e b, 2.31)

which is well known in the literature (Dynkin, 1965; Freidlin, 1985), where the precise hypotheses providing
convergence and correctness of (2.31) are also discussed.

The early versions of the solution (2.31) of the Dirichlet problem were presented long ago, as early as the
1920s. Philips and Wiener (1923) and Courant et al. (1928) considered random walks on plane nets, in-
troduced ‘exit times’ from closed domains, and actually obtained the solution of the Dirichlet problem for
the Laplace equation as the limit of the corresponding discrete problem when the net’s mesh passes to zero.
In the 1930s these ideas were further developed by Petrovsky (1934) and Khinchine (1933) who considered
more general random walks and more general differential operators. The solution (2.31) was obtained by
Doob (1956) for the case when F = D = 0, and later it was extended to problems

Dp+A4-Vp—Bp+F =0, Plog = —f (2.32)

involving a general second-order operator © from (2.11). It is remarkable that the solution of the gen-
eral problem (2.32) may still be expressed by the probabilistic formula (2.31) averaging random walks by
(2.9).

The advantage of the probabilistic solution (2.31) of the Dirichlet problem (2.29) is that it can be easily
estimated by a simple statistical procedure.

Let x!(¢), x*(¢), . ..,x"(¢), be M independent Brownian paths launched from x, and let 1, 13,..., 7y, be
the exit times of these sample paths from the domain G. Then the mathematical expectation in (2.31) can be
approximated by statistical averaging over the sample paths, which leads to the following approximation

1 i { fTB(xm(S))d,v + /‘L’m F( ”1([))67 f’B(x”l<s))d‘Ydt}
‘L',” 0 X o ’
M 0

m=1

of the solution ¢(x) of (2.29). Next, continuous paths x"(¢) can be approximated by discrete paths

m m m
xoﬁxlﬁxz—)..-HxKH,..7 (233)

with random jumps
N positions

—
Ax =X — x| — A )At = (e, £e, ..., £e), £>0,

occurring with the time interval At = ¢2. Then, (2.31) is approximated by the finite expression

M

B (x) %% > {f(me HE Ny ZF ﬁE;ﬂ} EM = e BEAT (2.34)

m=1

where x} is the last point of the discrete path (2.33) located inside G, and f ( ) is the value of the
boundary function f/(x) at the point x € G closest to xy .

Fig. 5 displays some numerical results demonstrating the efficiency of the probabilistic solution (2.31) of
Dirichlet problems. In particular, we consider the problem

V¢ —4(rcos+1) =0, ¢(1,0) = cos 0(2cos 0 + sin 0 + 2sin’ ), (2.35)
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Function ¢(%,0) from (2.86) is plotted against the angle 6 (in degrees).
Simulated values are plotted by a solid line while ezact values are plotted by a dashed line.

Fig. 5. Probabilistic solution of the Dirichlet problem (2.35).

formulated in the disk » <1, and recover its obvious solution
¢(r,0) = 1*cos 0(2cos 0 + sin 0 + 2 sin” 0), (2.36)

by the probabilistic formula (2.31). Simulated values of ¢(3, 0) along the circle r = § are plotted by a solid
line while the exact values are plotted by a dashed line. The mathematical expectation from (2.31) is es-
timated by (2.34) by averaging over 4000 discrete random walks with the space increment ¢ = 0.025.

2.4. Random walks in adjacent domains

Let G be an N-dimensional domain with the boundary 0G and let G be subdivided on two subdomains G,
and G, with the boundaries 0G, and 0G,. Let 0G$, 0G5 be the external boundaries of Gy, G,, and let 0G, be
the interface between G, and G, (Fig. 6).

Then, one may formulate the problem with two unknown functions ¢,, n = 1,2, defined in G, and
satisfying differential equations

W, +4, Vo, —B,p, +F| =0, n=1.2, (2.37)
boundary conditions
a, Vo, — b, + = 0, n=1,2, (2.38)
and interface conditions
b1 = dalog, =0, (2.39)
G Gvar =&+ a1 (€At Inside domains Gy, Gy a particle performs the Brownian

motion with the drift as shown on Fig 2. A particle spends
time At = €2 at each location and then instantly jumps on
a random vector Af = (+e,+e) + O(e?).

If the path & hits the interface G, it spends there time
At = €2 and then - with the probability P1 it moves to
G jumping on the deterministic vector dfay = @1 (&) At,
or, with the probability pa it moves to G2 jumping on the
deterministic vector A€ = a2(&¢)At.

Eerar =& + da(&)At

Fig. 6. Discrete Brownian motion in adjacent domains.
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P& -V, +pr& -V, — by + fi o = 0, p2=20, p+p=1, (2.40)
9Gy

with the coefficients Z,,, B, > 0, and F, defined inside domains G,; with the coefficients 4,, b, > 0, and f,
defined on the external boundaries 0G¢; and with the coefficients €,, p,, by > 0, fy, defined on the interface
0Gy. For definiteness vectors €, are assumed to be oriented inward in the corresponding domains and
normalized as ||é,|| = 1. The coefficients p;, > 0 are assumed to be non-negative and normalized by
p1 + p» = 1. Additionally we assume that all involved boundaries and coefficients are smooth and bounded.

Previous considerations suggest that to approach this problem by the random walk method we need,
first, to define a random motion E, in GU OG corresponding to the operator £: defined as

v, +4,-V,, inside domains G,
Ldp=1a, Vo, on the external boundaries 0G*, (2.41)
1@ -V, + prs - V,, on the interface dG,.

The required random motion can be defined in a manner similar to that in the previous section. Namely, at
every instant the future direction of the path &, is determined by its current position x,. From a position
inside either of the domains G,, n = 1,2, the motion continues as the Brownian walk with a drift corre-
sponding to the operator V2 +A,,(xo) V. From a position on the external boundaries 0G¢, the motion
continues as a determmls‘uc drift into G, along the vector d,(x,) with a time scale corresponding to the
reflection from the boundary discussed above. From a position on the interface 0G, the motion continues
with the probability p; as a deterministic drift into G; along the vector & (x;), or it continues with the
probability p, as a deterministic drift into G, along the vector &,(xo). The time scale of the drift into the
domains G,, corresponds to the problem inside G, with the boundary conditions p,é, - ﬁqf)n — b, + fo =
0, formulated as if the other domain did not exist.

_ The motion corresponding to the problem (2.37)~(2.40) can also be introduced as a continuous solution
& of the stochastic differential equation

2
d& = dw + Y (an/lf n ﬁ,,dij’) + py&,dA°, (2.42)
n=1

with initial conditions
E=x, AP =X"=0, and vw=n, ifxeaG, (2.43)

where A7, n = 1,2, are the local times in the domains G,, /; are the local times on the exterior boundaries
0Ge, and A is the local time on the 1nterface aGo ThlS equat1on has five unknown stochastic processes
(random functlons) the path é local times A A )» and a random index v,, which changes its value at the
instants when the path f, touches the interface 0G, taking the values v =1 or v = 2 with probabilities p,
and p, that are functions defined on the interface 0Gy. Solutions of the stochastic differential equation (2.42)
can be approximated by discrete random walks similar to that discussed in the previous section as ap-
proximations of the Brownian motion with reflections described by the stochastic equation (2.20).

When stochastic functions satisfying (2.42) and, consequently, (2.41), are found, then the solution of the
problem (2.37)—(2.40) can be represented by the formula (2.2) with F and B replaced by # and 4, defined,
together with the global time t;, by the formulas

an F;u Aln7 if 2JIC € G’”
B={b, F={F, =1 if&coc, (2.44)
bo, Jo, 2, if & €06,
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Function ¢(z,y) from (2.45) is computed along the circle x = %cos 8, y= %sin 0.
Simulated values are plotted by a solid line while the dashed line presents ezact values.
Angle 6 is measured in degrees.

Fig. 7. Probabilistic solution of the problem (2.37)—(2.40).

depending on the current location of the path E’[ with respect to the domain G ,, their external boundaries
0GY,, and the interface 0Gy.

Fig. 7 displays some numerical results demonstrating the efficiency of the probabilistic solution of the
problem (2.37)—(2.40). We recover function

2 ify>0,

22 _
bx) =3 = 4 aCO,  where co)={] 1770 (245)

in the disk x*> + y* < 1 considering it as the solution of the equation V?¢ = 0 in domains y > 0 and y < 0,
satisfying the interface condition

0¢ 0¢
32 _
Wiy

=4x[3C(1) — C(—1)] = 20x,
y=0—
on the line y = 0, and meeting predefined values on the circle x*> + > = 1. The probabilistic solution ¢(x, y)
along the circle x* + * =1 is plotted by a solid line while the dashed line presents exact values of this

function. The results were obtained by averaging over 4000 discrete random walks with the space increment
e =0.025.

3. Probabilistic solutions of the Helmholtz equation
3.1. The Dirichlet problem for the Helmholtz equation

Consider the boundary value problem
VA + @Y =0, Yl = o, xeGCRY, (3.1)

for the N-dimensional Helmholtz equation with a positive wave number k = kx(x) > 0 subdivided for
future convenience into two multiplicative components: a variable parameter »(x) > 0 and a constant k > 0
which is often considered to be large. A typical problem of wave radiation consists of finding the solution of
(3.1) that is defined in an exterior domain G C R" and satisfies some additional conditions at infinity, most
commonly, the Sommerfeld radiation condition.

Although (3.1) is an elliptic boundary value problem similar to (2.1) its solution may not be straight-
forwardly expressed by probabilistic formulas like (2.31) because the inequality x> > 0 leads to diver-
gent integration in (2.31). There is, however, a less straightforward way to obtain probabilistic solutions of
3.1).
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Let us seek a solution of (3.1) in the Liouville product form

Y(x) = p(x)e ™0, (3.2)

which has been used since the early 1800s as an anzatz for exact and approximate solutions of partial and
ordinary differential equations. Then, the Helmholtz equation from (3.1) can be split into two equations

(VS)* =2, (3.3)

i = =g k .
Evz(b +kVe VS + E(VZS) ¢ =0, Dlog = Woe™ |, (3.4)

Eq. (3.3) is a well-known eikonal equation from ray optics (Keller, 1958; Maslov and Fedoriuk, 1981) and it
is a particular case of the Hamilton—Jacobi equation of classical mechanics (Arnold, 1978). These equations
have been exhaustively studied in the literature so we may take as granted that the eikonal S(x) corre-
sponding to the imposed radiation conditions at infinity is already defined either on the domain G or on a
multi-sheeted Lagrangian manifold constructed over G similar to Riemann surfaces in the theory of ana-
lytic functions.

After the eikonal equation (3.3) is solved, either in phase space or in a more general Lagrangian mani-
fold, Eq. (3.4) may be considered as a second order partial differential equation with the Dirichlet boundary
condition depending only on the boundary values ¢, and the eikonal S(x). Egs. (3.3) and (3.4) together are
equivalent to the Helmholtz equation (3.1), but Eq. (3.4) considered with an already defined eikonal S(x)
has been widely used as a starting point of different approximate approaches to the general wave radiation
problem.

If k>> 1, one may neglect in (3.4) the first term and arrive at the ‘transport’ equation 2VS - V¢ +
(V2S) ¢ = 0, widely used in the geometrical theory of diffraction (Keller, 1958; Maslov and Fedoriuk, 1981)
for derivation of short-wave asymptotic approximations of wave fields. Another approximate approach to
Eq. (3.4) arises if instead of neglecting all of the first term in (3.4) we neglect only part of it. A broad
spectrum of ‘parabolic-equation” methods in the theory of high-frequency wave propagation is based on
this idea, originating from the contributions of Fock and Leontovich (1965).

3.2. A probabilistic solution of the complete transport equation

Let 4 be a vector field in an N-dimensional domain G C R" with the boundary 0G and let f be a function
on 0G. Then, the Dirichlet problem

4k o+ E A =0 dle =1, (33)

with a constant parameter k may be considered as a generalization of the complete transport equations (3.4)
which, in turn, may be treated as a particular case of (3.5) with A = VS, where S is an eikonal determined
from an independent eikonal equation (3.3).

Our approach to the problem (3.5) with a complex-valued differential operator §V? +4-V employs a
scheme to replace (3.5) by another Dirichlet problem with a real-valued differential operator which makes it
possible to obtain a solution in a probabilistic form similar to (2.31). This idea was partially developed
above in the analysis (2.13)—(2.16) of the Eq. (2.12) similar to (3.5), so all that is needed here is to extend the
analysis to accommodate the presence of the boundary conditions in (3.5).

Let ¢(Z) be an analytic function of a complex argument Z = X + iy, and consider it as a function ¢(%, y) of
two real N-dimensional vectors X, y, satisfying Cauchy—Riemann conditions (2.13). Then, following the
reasoning employed in (2.12)—(2.16) we convert the equation from (3.5) with N independent variables to the
equation
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N

Z ayﬂ—ka[Re(An)g—iﬁ—I( } (Zaxn> (3.6)

n=1

with a real-valued differential operator but with 2N independent variables.

The next step is to augment Eq. (3.6) with some Dirichlet boundary conditions in order to formulate a
boundary value problem that may be considered, in an appropriate sense, as an extension of the problem
(3.5).

Let G and 0G* be a domain and its boundary in a complex space C" satisfying
G'NRY =G, oG NRY =G, (3.7)

so that the intersections of G¢ and 0G¢ with the real space R" coincide with the domain G and its boundary
0G of the Dirichlet problem (3.5). Next, assume f“(Z) are the values of ¢(Z) on the boundary 0G¢. Such
f(Z) may be considered as the extension of the boundary values f(Z) from the real (N — 1)-dimensional
boundary 0G € R" onto the (2N — 1)-dimensional surface 0G° € C" = R*". Then, identifying the complex
variable Z with the pair (¥,7) of real variables we arrive at the boundary value problem consisting of the
Eq. (3.6) and the Dirichlet condition

O, V) zeoge = [, 5), where Z = X + 1j. (3.8)

Since the problem (3.6)—(3.8), has the structure of the Dirichlet problem (2.32) with 2N independent
variables x,,y,, n = 1,2,..., N, its solution may be obtained from the formula (2.31) which, in the con-
sidered particular case, can be conveniently arranged into the form

¢(f,J7)=E{f”(3 e f’B@”W}, 2Zax (3.9)

averaging random walks Efy launching from the point (¥,) and running across the space R*¥ = C" ac-
cording to the real stochastic equations

Re(dé) = 72w, + kRe(A)ds,  Im(dE) = \%w, + kIm(4)d:, W, € RY, (3.10)
where W, is the standard Brownian motion in the real space R". As for the exit time t, it is defined as the first
instant when the path é = 6” touches the boundary 0G¢, which is equivalent to the condition that the
projection Re(é ) of the path é to the real space touches the boundary 0G.

Since ¢ (¥, ¥) defined by (3.9) obeys boundary conditions (3.8) it is clear that the restriction ¢(¥,0) of this
function to the real space obeys the boundary condition from the original Dirichlet problem (3.5).
Therefore, to insure that ¢ (¥, 0) solves the problem (3.5) it is sufficient to show that the equation from (3.5)
is equivalent to (3.6). But equation (3.6) was derived from (3.5) under the hypothesis that ¢(¥,y) satisfies
the Cauchy—Riemann conditions (2.13), which is equivalent to the requirement that ¢(Z,0) is an analytic
function of the complex variable Z = ¥ + iy%. On the other hand, if we assume that 4(x) and f(x) from (3.5)
are analytic and that f© from (3.8) analytically continues f, then the mathematical expectation (3.9), if it
converges, determines an analytic function ¢(Z) = ¢(¥ +i¥) which, consequently, obeys the complex
equation from (3.5).

So, we finally conclude that if functions 4 and f from the problem (3.5) are analytic, and f(z) is the
analytic continuation of f(x), then the solution of the Dirichlet problem (3.5) can be represented by the
probabilistic formula

$(x) = { E)et o v } (3.11)
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where £ is the random motion defined by the stochastic differential equation

d& = Vidw, + kdd:, & =x, (3.12)
which is equivalent to (3.10), and 7 is the exit time of the projection Re(f
domain G. .

It is worth noting that formulas (3.11) remain valid if the paths & are governed by the equations

t

V) of the trajectory E; from the

d& = @ dip, + ke?ddr, & =1, (3.13)
slightly generalizing (3.12) by the presence of an arbitrary function &(z) of the complex space argument. To
justify (3.12) it suffices to multiply (3.5) by €' and to re-apply, with obvious modifications, all the reasoning
embodied in (3.6)—(3.11). In particular, it may be convenient to introduce o(z) by the formula

6(z) = g ~2arg(A(2)), (3.14)

which guarantees that the differentials of the Brownian and of the drift components of the path Ef belong to
the same N-dimensional subspace ¢G9I RY of C".

Representation (3.11) is valid for any domain G¢ satisfying (3.7), but the right-hand sides of these for-
mulae depend on values of /“(Z) on the surface 0G°, while the boundary conditions from (3.5) specify this
function only on its intersection 0G = 0G° N R" with the real space. However, (3.11) may still be used for
solution of the problem (3.5), because: (a) in many cases in problems of wave propagation, such as the
numerical examples presented later on, the correct extension of the boundary values f(Z) from 0G to 0G* is
known a priori; (b) in many cases there is a unique continuation of the analytic boundary values f(Z) of the
problem (3.5), from the (N — 1)-dimensional boundary 9G to the specific (2N — 1)-dimensional surface 0G*.

To construct such an extension of the (N — 1)-dimensional boundary 0G and of the boundary values g(2)
defined on 0G, assume that f(Z) and 0G are both analytic, which provides a unique analytic continuation of
f(Z) onto the (2N — 2)-dimensional analytic continuation 0G¢ of 0G. The integral lines of the vector field
ide2 areld) originating from 0G¢ form the (2N — 1)-dimensional surface 0G¢ which has a property that a
path started on 0G° and defined by (3.13) and (3.14) never leaves 0G°. The last property makes it possible to
compute the function ¢(z) on 0G° by the formula (3.11) with the paths & from (3.13) and (3.14), running on
the (2N — 1)-dimensional 0G° and stopping on the (2N — 2)-dimensional analytical continuation 0G¢ of the
real boundary 0G.

In order to illustrate the mechanism of continuation of boundary conditions, consider the one-dimen-
sional problem

%(b,, + <%— 1)¢,, —%qﬁ =0, onr>1, with ¢(1) =1, and ¢(c0) =0,
with obvious solution ¢ = e "H (r)/H, (1). It is clear that the paths (3.13) and (3.14), with 4 =4 — 1, do
not leave the line 0G¢, defined on the complex plane C by the equation
dr = ide e = ig(r), r(0) = 1.
dt
Consequently, formula (3.11) with paths from (3.13) and (3.14) determines the solution of this problem on
the line 0G* transversally crossing the real axis at » = 1. After that, the same formula (3.11), but with the
paths from (3.12), determines ¢(r) outside 0G¢ including the real semi-axis » > 1.

If the problem (3.5) stands alone, then restriction of its solution (3.11) and (3.12) to cases with analytic
vector fields 4 and analytic boundary values f may be considered as too severe. Here, however, our interests
are limited to a particular case (3.4) of the problem (3.5) arising from the analysis of the Helmholtz
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A small surface element G with center at fand transversal to
K(E) is projected by the dynamical system %% = /Y(E) to the
piece g of a fized reference surface Sy.

The ratio V(G)/V(s) of volumes of & and s converges to the
geometric divergence J(€) as the diameter of G tends to zero.

Fig. 8. Geometrical divergence of the vector field.

equation (3.1) describing propagation of time-harmonic waves. In this case it is rather common to deal with
analytic eikonals S determining analytic vector fields A =VS, and with analytic boundary conditions f
generated by analytic incident waves.

It should also be mentioned that in order to guarantee that the mathematical expectation (3.11) exists the
vector field 4 and the domain G must satisfy certain conditions, which are discussed in detail in the lit-
erature (Freidlin, 1985).

A specific feature of the solution (3.11) is that its exponent can be converted to an alternative form which
provides a convenient way for the asymptotic analysis of ¢(x) in the limit & > 1. =

Let & be a (N — 1)-dimensional surface (see Fig. 8) non-tangent to the vector field A and let &o(t,0) be a
solution of the initial value problem

d L S
L), Go-des.
t
parameterized by a vector ¢ = (61,02,...,05y_1). Then, the set (¢,6) may be considered as coordinates of

the point &,(¢,6), and one may introduce the function

—

J@ =det[r@)], E=&ra), V-

aﬁo(t 01,02,...,0yr-1)
6(t 01,02,..., O-N—l) ’

(3.15)

where V(&) is a Jacobi matrix of the transformation (¢, &) — &y(t, &). The function J (&) from (3.15) is widely
known in the geometrical theory of diffraction (ray theory) as the ‘geometrical divergence’ of the vector field
A, and the Liouville theorem establishes the relationship

av[i@] = Vi3® = S| 3(E+si@).  where 3O —n [4@)]. (3.16)

s=0

between the divergence of 4 and the derivative of In |J(&)| along 4.
Taking into account (3.16) and applying some elementary stochastic calculus, we can re-arrange solution
(3.11) of the boundary value problem (3.5) to the form

) J(&) efo’%vz(m) A4V J) dw

x)=E & =
}(x) f(& @)

: (3.17)

given in terms of a geometric characteristic J (E)

It should be noticed that although solution (3.17) of the problem (3.5) does not explicitly depend on the
parameter k, this parameter, nevertheless, heavily affects the solution through the structure (3.12) of the
trajectories 6 Consider, for example, the case when k > 1. Then the speed of the drift along the vector
field 4 is much hlgher than the average speed of the Brownian motion and the trajectory (Z follows closely
along the ‘rays’ Z described by the ordinary differential equation
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d
dr

Therefore, assuming that the ray Z’[‘ hits the boundary 0G at the point x,, we get an approximation

=4, L=

D(x) = Po(x) = f(x:) k> 1, (3.18)

which, indeed, can be rigorously justified when the boundary 0G, the boundary values f'and the vector field
A satisfy some conditions of regularity.
This approximation may also be obtained as an exact solution of the equation

24 -V +div(d) ¢o=0;  ¢oloc =1 (3.19)

which may be regarded as an approximation to the problem (3.5). Equation (3.19) is well known in the
geometrical theory of diffraction (ray method) as a ‘transport equation’ because it describes the transport of
a quantity ¢, along the vector field 4.

3.3. Numerical examples

To get an indication of the numerical efficiency of the probabilistic formulas (3.17) we consider a par-
ticular two dimensional case of (3.5) with & = 1 and with the vector field 4 = %/||¥|| generated by the eikonal
S(x) = x| = r.

Eq. (3.5) corresponding to this case takes the form 1V?¢ +i(3¢)/(dr) 4+ i(¢/2r) = 0, which has an
obvious solution ¢(r,0) = e "H, (), defined in any exterior domain r > R > 0. Since the vector field

A(r,0) = %/||%|| and its geometric divergence J(r,0) = r are both analytlc 1n the domain Re(r) > R, the
probabilistic formula (3.17) can be used for simulation of the functlon e’”H ( ) considered as the solution
of the Dirichlet problem with boundary conditions ¢(R, ) = e’lRH )(R) in the domain r > R.

Fig. 9 shows the results of the numerical simulation of the functlon e 2 H, M (2nr). This function is
computed twice: as a Hankel function and as the solution of the discussed Dlrlchlet problem given by the
probabilistic formula (3.17). The amplitudes of the computed functions are displayed on the first diagram,
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Function ¢(r) = e‘“i'H‘gn(an) is plotted against the radius r.

Fig. 9. Simulation of a Hankel function by random walks.
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and the second diagram displays their phases. The last diagram presents the relative error of the proba-
bilistic solution.

The presented results correspond to the radius 2zR = 4/30, where 1 =27 is the wave length. The
mathematical expectations from (3.17) were estimated by statistical sums of the type (2.34) where the
averaging included 2000 independent discrete Brownian walks with Cartesian increments Ax = Ay = 0.07.
The computations were very stable and despite the use of a rather rough discretization and the simplest
algorithms, the relative error was maintained below the low 2% level over the entire trial interval from
r = 0.05 to r =~ 8 wave lengths.

Next we consider a classical Sommerfeld problem of diffraction in a wedge, which consists of finding the
solution of the Helmholtz equation V) + k% = 0, defined in a wedge |0| < o with the Dirichlet boundary
conditions (7, o) = 0 imposed on its faces. The excitation is generated by the incident plane wave

Wi(r,0) = e e gy] <

arriving from infinity along the ray 6 = 6,, and except for this incident wave there should be no other waves
arriving from infinity. The last condition can be formalized as a requirement that the solution (7, #) admits
the decomposition

lﬁ(”ve) :l/jg(rae)+lpd(r’ 0)’ (320)

into a ‘geometrical’ component i, (r, 0), which includes the incident wave as well as a finite number of plane
reflected waves generated according to the laws of geometrical optics, and a diffracted component y,(r, 6)
satisfying the Sommerfeld radiation condition at infinity.

The geometrical field y,(r, 0) can be defined without any prior knowledge of the diffracted field by the
Sommerfeld integral

1 :
Yo(r,0) = i / [Pe(0— 0+ 1) — W0+ 0 — m)] " “do, (3.21)
m Jc

taken along the standard | J-like contour of integration C passing from % + ico to 3 + ico. The amplitude
function ¥, () can be defined as a finite sum of rational functions:

My

1 1
= — 22
Polw) Z{w904cxm w004ocm2a}’ (322)

m=M,

where M| and M, are any integers satisfying the inequalities M, > ";—f“ and M| < — %.

The diffracted field has the structure y4(r, 0) = e ¢4(r, 0), with the eikonal § = » and with the factor
¢q(r, 0) satisfying in the wedge |0| < o the complete transport equations (3.5) with the boundary conditions

Gq(r, o) = g(r,To) = —,(r, +o)e (3.23)
Since the field ¢4(r, 0) is defined as the solution of the boundary value problem of the type (3.5) it can be
computed by a probabilistic formula (3.17) which leads to the solution of the Sommerfeld problem of

diffraction computed by the random walk method. On the other hand, the exact solution of this problem
can be represented by the Sommerfeld integral

W(r,0) = ﬁ /C [P0 —w+7)— PO+ w—n)],e < do, (3.24)

similar to (3.22) but with a different amplitude function:

(o) :%{cot [4—’;(60— )] + tan [4—’;(w+00)}}. (3.25)
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Solid, dashed and dotted lines plot y(2nr,0) along the rays § = 30°,—30° and —120°,
¥(r,0) is the solution of the diffraction problem in the wedge |0] < 180° with incident wave along 6o = 90°

Fig. 10. Probabilistic solution of the Sommerfeld diffraction problem.

So, the Sommerfeld problem of diffraction in a wedge provides another opportunity to compare solu-
tions obtained by the random walk method with the exact solutions represented by conventional quadr-
atures.

Fig. 10 shows the results of the numerical simulation of the wave field (277, 0) from (3.24) and (3.25)
generated in a wedge by an incident plane wave. This field is computed twice: by direct numerical inte-
gration in (3.24) and (3.25), and through the probabilistic simulation of the diffracted component ¢, (r, 6) of
the total wave field.

The presented results correspond to the wedge |0| < 135° with the incident wave arriving along the di-
rection 0y = 90°. Solid lines display the wave field along the ray 8 = 30° which is exposed to the incident,
reflected and diffracted waves. Dashed lines correspond to the ray 0 = —30° which is exposed to the in-
cident, and diffracted waves. Dotted lines correspond to the ray 6 = —120° exposed only to the diffracted
waves. Computations using random walks with the same parameters as in the previous examples were
stable and the relative difference between the diffracted fields computed by the different methods was below
the 3% level on the entire wavelength interval of computation (0.05, 8).

3.4. Wave propagation in two media

In the above we discussed the application of the random walk method to the computation of solu-
tions of the Helmholtz equation in a single medium, and in Section 2.4 we discussed the application of
this method to differential equations formulated in two adjacent media with some interface bound-
ary conditions imposed. Comparing the presented material it is easy to see that these two cases may
be combined, which results in the possibility of employing probabilistic methods for the analysis of
wave propagation through several media. Here we consider a rather simple but, nevertheless, represen-
tative case of wave propagation in a space which comprises two half-spaces with different wave
speeds.
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Let a plane (x,y) be subdivided by the line y =0 on two half-spaces G; = {x,y:y >0} and G, =
{x,y: y < 0} occupied by different wave conducting media. Consider a plane wave

wl] — eikl(xcosﬁoﬁ—ysin()o)’ 0< 00 <m, (326)

propagating in the half-space G; in the direction from infinity towards the interface y = 0 separating G,
from G,. The interaction of this wave with the interface causes the excitation of secondary waves ¥/, and y,,
which are radiated to the domains G, and G, respectively. The wave y, radiated to G, is usually referred to
as the reflected wave, while the wave y, radiated to G, is referred to as the transmitted or refracted wave.
The goal of the present section is to compute the reflected and transmitted waves by the probabilistic
method.

More precisely, the problem considered here is to compute functions v, , which are defined in the do-
mains G, and satisfy the Helmholtz equations

Vi + ki, =0, iny>0,

(3.27)
Vi, + Ky, =0, iny<0
with different wave numbers k;,. Additionally, functions ¢, , must satisfy the interface conditions
W+ )|, = ¥al,cos (3.28)
0 ; 0
= Wh+v) =5 ¥, 3.29
oy y:O( 1 ) ¥, 2 (3.29)

and must obey the radiation conditions in the corresponding domains Gj ,.
We seek solutions /, , in the form

Y=y e, Yy = (1+¢y) e70%, (3.30)
with the eikonals
S, =xcos 0, + ysinl,, (3.31)
whose angles
k
0, = —0,, 0, = arccos (k_l cos 90) (3.32)
2

are determined by the direction 6, of the incident wave from (3.26). Then, comparing (3.27) with (3.30)—
(3.32) we find that the new unknown functions ¢, , must satisfy equations

i - 1

SV, + iV, + 5 ud, =0, (3.33)
with the unit vectors

é = (cos b, sinb), &, = (cos b, sin,), (3.34)
and these functions are coupled through the interface conditions

¢ — ¢, =0, (3-35)

[0 0 . . . .

i 6_y¢1 — a(ﬁz + ki sin0,¢, — ky sin 0, = ky sin 0 + k, sin 0, (3.36)

imposed on the line y = 0.
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Problem (3.33)—(3.36) has an obvious solution

kysin 0y + kysin 0, ky sin 0y — /k3 — ki cos? 0,

kysin 0y — kysin0y  k; sin 0y + \/k3 — k2 cos? 0,

¢1:¢2:

from which it follows that the solution v, , of the original problem (3.27)~(3.29) has the structure
v, = K, e S (3.37)

where the reflection coefficient K| and the transmission coefficient K, are explicitly determined as

in 0 — \/77 — cos? 0 _2sin0) k
K, :s?n ° — = Ky = el ; p=. (3.38)
sin 0y 4+ /72 — cos? 0, sin 0y + /7? — cos? 0, ke

On the other hand, problem (3.33)—(3.36) is of the type (2.37)-(2.40) discussed in Section 2.4 as an
example of problems admitting explicit probabilistic solutions. Therefore, applying the scheme of the
random walk method described in Section 2.4 we can compute the reflection and transmission coefficients
K, K, satisfying (3.37), and comparing the simulated results with exact values known from (3.38) we get
another opportunity to justify the efficiency of the random walk approach to problems of wave propa-
gation.

Fig. 11 shows results of the probabilistic computations of the reflection coefficients K; for different plane
incident waves. These coefficients are computed twice: by direct evaluation of (3.38) and through the
probabilistic solution of the problem (3.33)—(3.36). The presented results correspond to the case when the
upper half space has the wave number k; = 1.5 and the wave number of the lower half space is k, = 1,
which means that waves propagate in the lower domain 1.5 time faster than in the upper domain. The
reflected field was computed at the point x = (0,0.5) by the probabilistic formula where the mathematical

1 : .
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Fig. 11. Simulation of the reflection coefficient K.
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expectations were computed by averaging 1000 independent discrete random walks with the spatial in-
crement ¢ = 0.05. The computations were stable and the absolute error was in the range 0.01-0.02 for most
of the incident angles.

4. Conclusion

The results presented here show that the synthesis of the ray method and the probabilistic methods
provides a promising approach to problems of wave propagation which may be used both for effective
numerical evaluations and for asymptotic analysis. The advantages of this combination include, but are not
limited to: physical meaningfulness is retained from the ray theory; versatility and minimal requirements of
the problem’s data; numerical implementations may employ simple and scalable parallel algorithms with
minimal use of computer memory.

Here we explored basic ideas of the developing method and considered examples illustrating its appli-
cations to scalar problems with general first-order boundary conditions and to scalar problems formulated
in adjacent domains. In future papers we will extend the approach to vector problems of elastodynamics
and electromagnetics and apply the method to diffraction problems as yet unsolved by other methods.
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