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Abstract

This paper develops an approach to problems of wave diffraction that combines the physical clarity of the ray method

with the versatility of direct numerical methods. First it addresses scalar problems with general linear first-order

boundary conditions, and then it considers problems formulated in adjacent domains with imposed interface condi-

tions. We start by following closely the scheme of the ray method, but instead of looking for approximate expressions

for the amplitudes of the Liouville decomposition we obtain their exact representations as the mathematical expecta-

tions of some functionals on the space of Brownian trajectories. The obtained solutions provide direct improvements of

the ray method approximations to the exact solutions, and they are shown to admit efficient numerical evaluations.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many problems of continuum mechanics are effectively approached today by direct numerical methods

that one way or another reduce the problems to systems of algebraic equations. There are however areas

such as wave propagation where such techniques remain ineffective. The nature of wave propagation

phenomena reduces the efficiency of most conventional direct numerical techniques but it is often possible

to use simple and physically meaningful asymptotic methods.
One of the most efficient tools for analysis of wave propagation is the ‘geometrical theory of diffraction’

or the ‘ray method’, whose adaptations to specific areas are also known as ‘geometrical optics’, ‘geometrical

acoustics’, ‘geometrical seismology’, etc. These methods are based on representations of wave fields in the

Liouville form
P

/nðxÞeiSnðxÞ, where the eikonals SnðxÞ are associated with the rays and the amplitudes /nðxÞ
admit physical interpretations of quantities transported along the rays. The success of the geometrical

theory of diffraction is secured by the existence of the canonical procedure to determine the eikonals SnðxÞ
and by the fact that in many practically important cases there exist simple asymptotic approximations for

the amplitudes /nðxÞ. In general, however, these amplitudes are defined by partial differential equations
which have neither exact nor approximate analytic solutions and are difficult for direct numerical analysis.
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Here we develop an approach to problems of wave propagation combining the physical clarity of the ray

method with the versatility of direct numerical methods. We start our analysis following closely the scheme

of the ray method, but instead of looking for approximate expressions for the amplitudes of the Liouville

representations we obtain their exact values as the mathematical expectations of some functionals on the
space of Brownian trajectories. The obtained solutions provide direct improvements of the ray method

approximations, and they are shown to admit efficient numerical evaluations.

The first probabilistic solutions of partial differential equations were obtained in the 1920s (Philips and

Wiener, 1923) as a result of the analysis of the Laplace equation by the finite difference scheme. Rapid

progress in the development of probabilistic methods in partial differential equations was made in the

1950s, after the publication of landmark papers of Feynman (1942, 1948) and Kac (1949).

These theories have a long record of successful applications to numerical simulation of evolutions of

quantum systems, and quite recently attempts have been made to apply path integral methods to acoustics
(Schlottmann, 1999) and electromagnetics (Nevels et al., 2000). Probabilistic methods have also been ap-

plied to steady flow computations (Hunt et al., 1995) and these methods are increasingly used for analysis

of geophysical wave propagation (Bal et al., 1999, 2000). In Bal et al. (2000) and Papanicolaou (1998) the

competitiveness of probabilistic methods in wave propagation is discussed, and in Bal et al. (1999, 2000)

such methods are used to study the transport of energy by waves propagating in random media. Such

transport is described by first-order differential equations and a probabilistic method is developed in those

papers for their analysis. Here, instead, we deal with problems in non-random media but employ proba-

bilistic methods for the analysis of the second-order auxiliary equations whose first-order components are
also known in ray theory as transport equations.

The basic ideas of our approach to problems of wave propagation are outlined in Budaev and Bogy,

2001, 2002) where the model problems with Dirichlet boundary conditions were discussed. Here we also

take into consideration problems with general linear first-order boundary conditions and problems for-

mulated in adjacent domains with imposed interface conditions.

Section 2 focuses on the fundamental notions underlying the application of random walk methods to

partial differential equations. Results presented in the first part of the section are rather standard but are

included to make the paper self-contained and to provide the necessary background for understanding what
follows. The rest of this section addresses the application of random walk methods to boundary value

problems. We first discuss the notion of Brownian motion with reflections and then represent solutions of

problems with linear first-order boundary conditions by a probabilistic formula averaging random walks

with reflections. This material is also not new, although it is presented in a non-standard form which, we

believe, better suits our needs. In particular, in addition to a concept of ‘local time’ at the boundary, widely

used in the literature, we introduce a ‘local time in the domain’, which makes some important formulas

more transparent. Finally, we introduce random walks in domains that comprise two adjacent domains and

employ the developed technique to solve problems with imposed interface conditions. We are not aware of
other works reporting applications of probabilistic methods to problems of this type, although, from the

point of view employed here, such problems are just special cases of problems on a single domain. The

discussed material is illustrated by two numerical examples.

Section 3 focuses on the application of the random walk method to the Helmholtz equation. First, this

equation is reduced to a complete transport equation defined through the eikonal which can always be

computed by the canonical Hamilton–Jacobi technique. Then the transport equation is treated by the

methods discussed in the previous sections and the obtained probabilistic solution is converted to a form

that may be considered a direct improvement of the well-known ray method approximation to the exact
solution of the Helmholtz equation. To provide an indication of the efficiency of the probabilistic solutions

of the Helmholtz equation we consider three illustrative examples. First we recover the Hankel function by

considering it as a solution of the Dirichlet problem for the Helmholtz equation outside a circle of radius as

small as 3% of the wavelength. Next we simulate the solution of the Sommerfeld diffraction problem in a
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wedge with Dirichlet boundary conditions. Finally, we compute the reflection and transmission coefficients

of plane waves incident on the interface separating two half-spaces with different wave speeds.

It should be emphasized that all of the numerical examples considered in the paper are selected solely for

illustrative purposes. We attempted to choose the simplest problems whose probabilistic solutions employ
the discussed techniques, and we do not claim that the probabilistic solutions of these problems are

preferable to solutions delivered by any other method. It is expected that the demonstrations provide

convincing evidence that the methods employed will be applicable to more complex problems for which

other methods fail. We will address these problems in future papers.

2. Probabilistic solutions of differential equations

2.1. Random motions in the entire space

Let a particle start a random walk on the real axis �1 < x < 1 from the point x ¼ 0 and jump at the

instants t1 < t2 < t3 < � � �, the distance e in either of two equally probable directions, as shown on the left
diagram of Fig. 1. The particle’s position xn on the time interval ½tn; tnþ1Þ prior to the ðnþ 1Þ-th jump is

represented as a sum xn ¼
Pn

m¼1 Dxm of independent random variables Dxn ¼ 	e with two equally possible

values.

Assume that the instants tn are equally spaced and that tn ¼ nDt. Then the sequences xn and tn determine a

piecewise constant function ewwt ¼ x~tt=Dt, where ett ¼ t=Dt, is the last instant of the series tn preceding or co-

inciding with t. It is well known (Dynkin, 1965; Wiener, 1923) that if the time and space meshes decrease

together such that Dt ¼ e2 ! 0, then the jump-motion ewwt converges in some sense to a continuous random

motion wt which is usually referred to as the one-dimensional Brownian motion or, equivalently, as the one-
dimensional Wiener process. The N-dimensional Brownian motion in RN is defined as a superposition of

one-dimensional Brownian motions (see the right diagram of Fig. 1). Let ~wwt ¼ ðw1
t ;w

2
t ; . . . ;w

N
t Þ be a path in

RN whose Cartesian coordinates are independent one dimensional Brownian motions. Then ~wwt is said to be

the Brownian motion, or the Wiener process in RN .

A striking property of the Brownian motion is that it is closely related with partial differential equations.

For instance, an N-dimensional elliptic equation

1
2
r2/ � B/ þ F ¼ 0; ð2:1Þ

can be explicitly solved by the expectation

Fig. 1. Discrete Brownian motion.
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/ðxÞ ¼ E

Z 1

0

F ð~nnx
t Þe

�
R t

0
Bð~nnxt Þds dt

� �
; ð2:2Þ

where the averaging is extended over all the Brownian motions

~nnx
t ¼ xþ~wwt; ð2:3Þ

launched from the observation point. Solution (2.2) is widely known in the literature as the Feynman–Kac
formula, and in Simon (1979) one may find a long list of papers providing different proofs of this formula

employing different ideas and applying different hypotheses on the coefficients B, F. For our purposes it is

enough to mention that if B and F are smooth and B > 0, then the mathematical expectation in (2.2) exists

and presents a solution of the Eq. (2.1).

Eq. (2.1) is not the only one that can be explicitly solved by averaging over trajectories of random

motions. In particular, a more general equation

1
2
r2/ þ~AA � ~rr/ � B/ þ F ¼ 0; ð2:4Þ

can also be solved by the formula (2.2), but the averaging in this case has to be extended over trajectories of

Brownian motions with a drift, which is discussed below.

Let ~AAðxÞ be a vector field on RN , and let~nnx
t be a random motion (stochastic process) in RN launched from

x and defined as a superposition

~nnx
t ¼~ffxt þ~wwt; ~nnx

0 ¼ x; ð2:5Þ

of the N-dimensional Brownian motion ~wwt, ~ww0 ¼ 0, and of the motion ~ffxt controlled by the ordinary dif-

ferential equation

d

dt
~ffxt ¼ ~AA ~nnx

t

� �
� ~AA ~ffxt

�
þ~wwt

�
; ~ffx0 ¼ x; ð2:6Þ

whose right-hand side depends on the Brownian motion ~wwt. It should be emphasized that although both

motions ~wwt and~ffxt are random, they are not independent, because any particular Brownian path ~wwt com-

pletely determines the component~ffxt .
The geometrical meaning of the motion ~nnx

t becomes clear from the estimate

D~nnt ¼ ~AA ~nnt

� �
Dt þ~wwDt þ oðDtÞ; D~nnt �~nntþDt �~nnt; ð2:7Þ

which follows from (2.5) and (2.6) and states that on a short time interval from t to t þ Dt the increment D~nnt

consists of a random move ~wwDt and of a deterministic move D~fft ¼ ~AAð~nnx
t ÞDt. Due to this interpretation,

illustrated on Fig. 2, random walks described by (2.5) and (2.6) are usually referred to as Brownian motions

with a drift or, equivalently, as Wiener processes with a drift. Passing in (2.7) to the limit Dt ! 0 we obtain

a stochastic differential equation

Fig. 2. Discrete Brownian motion with a drift.
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d~nnx
t ¼ d~wwt þ~AAdt; ~nn0 ¼ x; ð2:8Þ

which provides a well known way (Dynkin, 1965; Ito and McKean, 1974) to analyze random motions with

a drift.
Since any positive-definite second order differential equation can be represented in the form (2.4) any of

these equations can be solved by the probabilistic formulas (2.2). This solution, however, can be extended

to more general equations, such as degenerate elliptic equations including parabolic equations.

Let bDDðxÞ be an N 
 N matrix function in RN and let ~AAðxÞ be a vector field in RN . Then, the random

motion ~nnx
t determined by the equations

~nnx
t ¼~ffxt þ bDDðxÞ �~wwt;

d

dt
~ffxt ¼ ~AA ~nnx

t

� �
; ~ffx0 ¼ x; ð2:9Þ

may be viewed (see Fig. 3) as an asymmetric Brownian motion with a drift (Dynkin, 1965; Ito and McKean,

1974). The asymmetric motion defined by (2.9) is related to the partial differential equation

D/ þ~AA � ~rr/ � B/ þ F ¼ 0; ð2:10Þ

in which the second order operator D is defined as

D/ ¼ 1

2

XN
m;n¼1

Cmn
o2/

oxmoxn
; Cmn ¼

XN
j¼1

DmjDnj; ð2:11Þ

where Dmn are the elements of the matrix bDD from (2.9) and, therefore, Cmn are the elements of the symmetric

matrix bCC ¼ bDD � bDD>. Equations of the type (2.10) and (2.11) admit explicit solutions by formula (2.2) with

the averaging over random walks satisfying (2.9), and this solution remains valid independently of the rank

of the matrix bDD.

Consider, for example, the case bDD ¼ 0. Then, (2.9) degenerates to a deterministic dynamical system

dnx
t ¼ ~AAdt which results in paths dnx

t that do not have random components. Therefore, the sign of the

mathematical expectation in (2.2) can be dropped and the solution has the form

/ðxÞ ¼
Z 1

0

F ðnx
t Þe

�
R t

0
Bðnxs Þdsdt; dnx

t ¼ ~AAdt; nx
0 ¼ x;

which is an obvious solution of the first order equation ~AA � ~rr/ � B/ þ F ¼ 0.

The above considerations can be straightforwardly extended to equations with complex coefficients. For

instance, consider the complex equation

i

2
r2/ þ~AA � ~rr/ � B/ þ F ¼ 0; ð2:12Þ

with N independent real variables x1; x2; . . . ; xN , considered as the Cartesian components of the N-dimen-

sional real vector ~xx. Let /ðzÞ be an analytic function of a complex N-dimensional argument ~zz ¼~xxþ i~yy.

Fig. 3. Discrete asymmetric Brownian motion with a drift.
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Then, /ð~zzÞ can be treated as a complex-valued function /ð~xx;~yyÞ of two real vectors ~xx and ~yy satisfying

Cauchy–Riemann conditions

i
o/
oxn

¼ o/
oyn

; zn ¼ xn þ iyn; n ¼ 1; 2; . . . ;N ; ð2:13Þ

where xn 2 R and yn 2 R are the components of~xx and ~yy. From (2.13) we derive identities

o2/
ox2n

¼ � o2/
oy2n

;
o2/

oxnoyn
¼ i

o2/
ox2n

; i
XN
n¼1

o2/
ox2n

¼
XN
n¼1

o2/
oxnoyn

; ð2:14Þ

and

An
o/
oxn

¼ ReðAnÞ
o/
oxn

þ iImðAnÞ
o/
oxn

¼ ReðAnÞ
o/
oxn

þ ImðAnÞ
o/
oyn

ð2:15Þ

which result in the representation of the Eq. (2.12) in the form

1

2

XN
n¼1

o2/
oxnoyn

þ
XN
n¼1

ReðAnÞ
o/
oxn

�
þ ImðAnÞ

o/
oyn

�
� B/ þ F ¼ 0; ð2:16Þ

i.e., the standard second-order differential equation with 2N independent variables.

Eq. (2.16) matches the structure of the Eqs. (2.10) and (2.11) with 2N real variables and, therefore, its

solution can be obtained as the mathematical expectation (2.2) averaging 2N-dimensional random walks of
the type (2.9) with the matrix D determined by the second order component of the Eq. (2.16) as defined by

(2.11). An elementary analysis shows that D has the rank N and that the above mentioned random walks

are described by the equations

Reðd~nntÞ ¼
1ffiffiffi
2

p ~wwt þReð~AAÞdt; Imðd~nntÞ ¼
1ffiffiffi
2

p ~wwt þ Imð~AAÞdt; ~wwt 2 RN ; ð2:17Þ

where ~wwt is the standard Brownian motion in the N-dimensional real space RN . In complex notation,

solutions of stochastic equations (2.17) take the form

nx
t ¼

ffiffi
i

p
~wwt þ~ffxt ; where

d

dt
~ffxt ¼ ~AAð~nnx

t Þ; ~ffx0 ¼ x; ð2:18Þ

and this leads to the conclusion that the analytic solution / of (2.12) can be represented by the formula (2.2)

with the paths (2.18) running across the complex space CN even while their Brownian component ~wwt re-

mains real-valued. This conclusion is based on the hypothesis that the solution / of (2.12) is analytic, while
the analyticity of the coefficients~AA, B and F is not formally required. However, if we assume that~AA, B and F

are analytic, then we may derive the analyticity of / defined by (2.2) and (2.18), and, therefore, justify that

/ solves Eq. (2.12).

Eq. (2.12) may also be considered (Simon, 1979) as a time independent Schr€oodinger equation in the

presence of a magnetic potential, which leads to the solution of (2.12) represented by means of Feynman’s

path integrals. This solution does not require analyticity of the coefficients~AA, B and F, but it is more difficult

for numerical evaluation than the probabilistic solution (2.2) averaging complex random walks (2.18).

However, if~AA, B and F are analytic, then the contour deformation technique discussed in Chang and Miller
(1987) makes it possible to convert Feynman’s integrals solving (2.12) to probabilistic formulas (2.2) and

(2.18).
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2.2. Random motions in domains with boundaries

It is remarkable that the probabilistic approach can be extended from partial differential equations like

(2.2) in the entire space to boundary value problems

1
2
r2/ þ~AA � ~rr/ � B/ þ F

���
G
¼ 0; ~aa � ~rr/ � b / þ f

���
oG

¼ 0; ð2:19Þ

formulated in a domain G � RN with the boundary oG. Coefficients ~AA, B and F are assumed here to be

defined inside G, while the coefficients ~aa, b and f are defined on oG. Additionally, for definiteness, we as-

sume that vectors ~aa are oriented inwards toward G.
Applications of random walk methods to problems (2.19) are based on the idea of defining ran-

dom walks (stochastic processes) on the closure G [ oG whose behavior inside G corresponds to the op-

erator LG ¼ 1
2
r2 þ~AA � ~rr� B, and whose behavior on the boundary oG corresponds to the first-order

operator LoG ¼~aa � ~rr� b. Since both operators LG and LoG are particular cases of the general second-order

operator discussed in the previous section, it is natural to expect that inside G the random walk should look

like a Brownian motion with a drift associated with the vector fields ~AA, and on the boundary oG it should

look like a deterministic motion along the vector ~aa. This idea can indeed be carried out but attention is

needed to the continuity of the total motion, which may be violated if the time scales of the motions in G
and oG are not properly coordinated.

To see the origin of the problem with the speed coordination consider first the motion inside G. It is

composed of the standard Brownian motion ~wwt and of the deterministic drift ~ffðtÞ whose speed-vector ~AA
is uniquely determined because it comes from Eq. (2.19) normalized to the coefficient 1

2
in front of the

Laplacian. On the contrary, the boundary condition in (2.19) does not have a preferred normalization the

result of which is that the vector ~aa determines only the direction of the motion at the boundary oG but

applies no restriction on its speed.

Stochastic processes~nnx
t corresponding to the problem (2.19) are known as reflecting random motions and

they can be introduced as continuous solutions of the stochastic differential equation

d~nnx
t ¼ d~wwt þ~AA dKt þ~aa dkt; ~nnx

0 ¼ x; k0 ¼ 0; ð2:20Þ

with an additional unknown kt, which is required to be a continuous non-decreasing stochastic process

increasing only on the ‘visiting’ set g ¼ ft :~nnt 2 oGg of instants when the path~nnt touches the boundary oG.
The process kt is called the ‘local time at oG’ because it admits interpretation as the measure of the time

spent by the path ~nnt on the boundary oG. As for Kt it is defined here as the Lebesgue measure of the set

G ¼ fs : 0 < s < t;~nns 2 Gg and, correspondingly, we call Kt the ‘local time in G’.

Stochastic differential equations of the type similar to (2.20) were introduced by Skorokhod (1961), and

Watanabe (1971) used such equations for analysis of general boundary value problems. The ‘local time’ kt

on the boundary is extensively discussed in Ito and McKean (1974), where, in particular, it is proven that if
~aa 6¼ 0 then the Lebesgue measure of the visiting set g ¼ ft :~nnt 2 oGg is equal to zero. This observation

makes it possible to re-write Skorokhod’s equation in the form (2.20), which is more convenient because it

treats similarly the domain G and its boundary oG.
Continuous random motions corresponding to the boundary value problem (2.19) can be approximated

by discrete random walks

~nn0 !~nn1 !~nn2 ! � � � !~nnn�1 !~nnn ! � � � ð2:21Þ

whose individual steps are defined differently depending on the location of their initial positions with re-
spect to the boundary oG. If~nnn�1 is located inside G and its distance from oG exceeds e then the walk spends

at this point the time Dtn ¼ e2 and then moves to the next random point
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~nnn ¼~nnn�1 þ~AAð~nnn�1ÞDtn þ~wwn; where ~wwn ¼ ð	e;	e; . . . ;	eÞ; Dtn ¼ e2; ð2:22Þ
which is defined by a deterministic move ~AAð~nnn�1ÞDt and a random jump along a vector ~wwn with 2N equally
probable values. Otherwise, the walk spends at ~nnn�1 the time

Dtn ¼ e
.���~aa �nnn�1

� ����; ~nnn�1 � �nnn�1 2 oG; ð2:23Þ

where �nnn�1 is the point on oG closest to ~nnn�1, and then moves to the non-random point

~nnn ¼~nnn�1 þ e~aað�nnn�1Þ
.���~aa �nnn�1

� ����: ð2:24Þ

As e ! 0 the lengths of the jumps defined by (2.24) and by (2.22) have the same order and this provides

convergence of the process to a continuous random motion. Furthermore, the local times kt and Kt can be

approximated as the limits

Kt ¼ lim
e!0

e2 N e
G

� �
; kt ¼ lim

e!0
e N e

oG

.
~aa �nnn�1

� ���� ���� �
;

where N e
oG and N e

G are the total numbers of steps of the discrete walk (2.21) determined by the rules (2.24) or
(2.22), respectively.

It is important to emphasize that the described motion, illustrated by the Fig. 4 is random only inside G,

but on the boundary oG the motion is completely deterministic and determines a shift along the vector field
~aa defined on oG.

Since trajectories~nnx
t cannot visit simultaneously both the domain G and its boundary oG, it is natural to

introduce global coefficients

~AA ¼
~AA; in G
~aa; on oG;

�
B ¼ B; in G

b; on oG;

�
F ¼ F ; in G

f ; on oG;

�
ð2:25Þ

which unify the coefficients of the equation and of the boundary condition from (2.19) to functions defined

on G [ oG. Introducing also the global time measure

dtt ¼ dkt; if ~nnt 2 oG;
dKt; if ~nnt 2 G;

�
ð2:26Þ

we re-arrange (2.20) into a stochastic equation

d~nnx
t ¼ d~wwt þ ~AAdtt; ~nnx

0 ¼ x; ð2:27Þ
similar to (2.8) and then the solution of the problem (2.19) can be expressed in the form

/ðxÞ ¼ E

Z 1

0

Fð~nnx
t Þe

�
R t

0
Bð~nnxs Þdtsdtt; ð2:28Þ

which may be considered as a direct extension of (2.2). This solution may, certainly, not be valid in all

circumstances, and some restrictions must be applied to the domain G and to other parameters of the

Fig. 4. Discrete Brownian motion with reflections.
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problem. A comprehensive discussion of this topic may be found in Freidlin (1985), so we do not go into

more detail here, assuming that the correctness of the solution (2.28) must be questioned in each particular

case when this formula is used.

It is well-known that the problem (2.19) is not necessarily always solvable and some conditions of
solvability must be imposed. Thus, the Neuman problem in an interior domain G with the boundary

condition o/=o~nnjoG ¼ f does not have solutions unless
R
oG f ¼ 0. Such conditions of solvability are natu-

rally included in the probabilistic solution (2.28) as conditions providing convergence of the involved

mathematical expectation.

2.3. Probabilistic solution of the Dirichlet problem

As an instructive example illustrating the solution (2.28) of the general boundary value problem (2.19) we

consider here a simpler Dirichlet problem

1
2
r2/ þ~AA � ~rr/ � B/ þ F

���
G
¼ 0; /joG ¼ f ; ð2:29Þ

which is a particular case of (2.19) corresponding to the values ~aa ¼ 0, b ¼ 1.

Since the vector field ~aa from (2.19) determines the speed of the trajectories ~nnx
t on the boundary oG, the

vanishing of ~aa means that the trajectories stop as soon as they reach the boundary, i.e. ~nnx
t ¼~nnx

s, for any

tP s, where the ‘exit time’ (Dynkin, 1965; Ito and McKean, 1974)

s � infft :~nnx
t 62 Gg; ð2:30Þ

may be viewed as the first instant when the path~nnx
t hits the boundary. Then, the local times Kt and kt in the

domain and at the boundary are described as

Kt ¼
t; t < s;
s; tP s;

�
kt ¼

0; t < s;
t � s; tP s;

�
and, correspondingly

dKt ¼
dt; t < s;
0; tP s;

�
dkt ¼

0; t < s;
dt; tP s:

�
Taking into account the definition (2.26) of the global time measure tt we re-write solution (2.28) in the

form

/ðxÞ ¼ E IF
�

þ If
�
;

where

IF ¼
R1
0

F ð~nnx
t Þe

�
R t

0
Bð~nnxs ÞdtsdKt ¼

R s
0
F ð~nnx

t Þe
�
R t

0
Bð~nnxs Þdtsdt;

If ¼
R1
0

f ð~nnx
t Þe

�
R t

0
Bð~nnxs ÞdtsdKt ¼ f ð~nnx

sÞ
R1

s e
�
R t

0
Bð~nnxs Þdtsdt:

Then, assuming that b ¼ 1, we similarly evaluate the integral from the exponents:Z t

0

Bð~nnx
sÞdts ¼

Z t

0

dks þ
Z t

0

Bð~nnx
sÞdKs ¼ ðt � sÞvt�s þ

Z minðt;sÞ

0

Bð~nnx
sÞds;

where vt is the Heaviside step-function equal to zero for t < 0 and to unity otherwise. Substituting this

result into the expressions for If and IF we have
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IF ¼
Z s

0

F ð~nnx
t Þe

�
R t

0
Bð~nnxs Þdtsdt; If ¼ f ð~nnx

sÞ
Z 1

s
e

s�tþ
R s

0
Bð~nnxs Þdsdt ¼ f ð~nnx

sÞe
�
R s

0
Bð~nnxs Þds;

and the solution of the Dirichlet problem (2.29) arrives at its final form

/ðxÞ ¼ E f ð~nnx
sÞe

�
R s

0
Bð~nnxs Þds

�
þ
Z s

0

F ð~nnx
t Þe

�
R t

0
Bð~nnxs Þdsdt

�
; ð2:31Þ

which is well known in the literature (Dynkin, 1965; Freidlin, 1985), where the precise hypotheses providing

convergence and correctness of (2.31) are also discussed.

The early versions of the solution (2.31) of the Dirichlet problem were presented long ago, as early as the
1920s. Philips and Wiener (1923) and Courant et al. (1928) considered random walks on plane nets, in-

troduced ‘exit times’ from closed domains, and actually obtained the solution of the Dirichlet problem for

the Laplace equation as the limit of the corresponding discrete problem when the net’s mesh passes to zero.

In the 1930s these ideas were further developed by Petrovsky (1934) and Khinchine (1933) who considered

more general random walks and more general differential operators. The solution (2.31) was obtained by

Doob (1956) for the case when F ¼ D ¼ 0, and later it was extended to problems

D/ þ~AA � ~rr/ � B/ þ F ¼ 0; /joG ¼ �f ; ð2:32Þ

involving a general second-order operator D from (2.11). It is remarkable that the solution of the gen-

eral problem (2.32) may still be expressed by the probabilistic formula (2.31) averaging random walks by

(2.9).

The advantage of the probabilistic solution (2.31) of the Dirichlet problem (2.29) is that it can be easily

estimated by a simple statistical procedure.

Let x1ðtÞ, x2ðtÞ; . . . ; xMðtÞ, be M independent Brownian paths launched from x, and let s1, s2; . . . ; sM , be
the exit times of these sample paths from the domain G. Then the mathematical expectation in (2.31) can be

approximated by statistical averaging over the sample paths, which leads to the following approximation

/ðxÞ � 1

M

XM
m¼1

f xmðsmÞð Þe�
R s

0
BðxmðsÞÞds

�
þ
Z sm

0

F xmðtÞð Þe�
R t

0
BðxmðsÞÞds

dt
�
;

of the solution /ðxÞ of (2.29). Next, continuous paths xmðtÞ can be approximated by discrete paths

xm0 ! xm1 ! xm2 ! � � � ! xmKm
! . . . ; ð2:33Þ

with random jumps

Dxmn ¼ xmn � xmn�1 � Dðxmn�1ÞDt ¼ ð	e;	e; . . . ;	eÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{N positions

; e > 0;

occurring with the time interval Dt ¼ e2. Then, (2.31) is approximated by the finite expression

/ðxÞ � 1

M

XM
m¼1

eff xmKm

� �YKm

m¼1

Em
m

(
þ e2

XKm

n¼1

F xmn
� �YKm

m¼1

Em
m

)
; Em

m ¼ e�Bðxmm ÞDxmm ; ð2:34Þ

where xmKm
is the last point of the discrete path (2.33) located inside G, and eff xmKm

� �
is the value of the

boundary function f ðxÞ at the point x 2 oG closest to xmKm
.

Fig. 5 displays some numerical results demonstrating the efficiency of the probabilistic solution (2.31) of
Dirichlet problems. In particular, we consider the problem

r2/ � 4ðr cos h þ 1Þ ¼ 0; /ð1; hÞ ¼ cos h 2 cos h
�

þ sin h þ 2 sin2 h
�
; ð2:35Þ
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formulated in the disk r6 1, and recover its obvious solution

/ðr; hÞ ¼ r2 cos h 2 cos h
�

þ sin h þ 2 sin2 h
�
; ð2:36Þ

by the probabilistic formula (2.31). Simulated values of /ð1
2
; hÞ along the circle r ¼ 1

2
are plotted by a solid

line while the exact values are plotted by a dashed line. The mathematical expectation from (2.31) is es-

timated by (2.34) by averaging over 4000 discrete random walks with the space increment e ¼ 0:025.

2.4. Random walks in adjacent domains

Let G be an N-dimensional domain with the boundary oG and let G be subdivided on two subdomains G1

and G2 with the boundaries oG1 and oG2. Let oGe
1, oG

e
2 be the external boundaries of G1, G2, and let oG0 be

the interface between G1 and G2 (Fig. 6).

Then, one may formulate the problem with two unknown functions /n, n ¼ 1; 2, defined in Gn and

satisfying differential equations

1
2
r2/n þ~AAn � ~rr/n � Bn/n þ Fn

���
Gn

¼ 0; n ¼ 1; 2; ð2:37Þ

boundary conditions

an
!� ~rr/n � bn/n þ fn

���
oG0

n

¼ 0; n ¼ 1; 2; ð2:38Þ

and interface conditions

/1 � /2joG0
¼ 0; ð2:39Þ

Fig. 5. Probabilistic solution of the Dirichlet problem (2.35).

Fig. 6. Discrete Brownian motion in adjacent domains.
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p1~ee1 � ~rr/1 þ p2~ee2 � ~rr/2 � b0/1 þ f0
���
oG0

¼ 0; p1;2 P 0; p1 þ p2 ¼ 1; ð2:40Þ

with the coefficients ~AAn, Bn > 0, and Fn defined inside domains Gn; with the coefficients ~aan, bn > 0, and fn
defined on the external boundaries oGe

n; and with the coefficients~een, pn, b0 > 0, f0, defined on the interface

oG0. For definiteness vectors ~een are assumed to be oriented inward in the corresponding domains and

normalized as k~eenk ¼ 1. The coefficients p1;2 P 0 are assumed to be non-negative and normalized by

p1 þ p2 ¼ 1. Additionally we assume that all involved boundaries and coefficients are smooth and bounded.

Previous considerations suggest that to approach this problem by the random walk method we need,

first, to define a random motion ~nnt in G [ oG corresponding to the operator Ln defined as

Ln/ ¼

1
2
r2/n þ~AAn � ~rr/n; inside domains Gn

~aan � ~rr/n; on the external boundaries oGe
n;

p1~ee1 � ~rr/1 þ p2~ee2 � ~rr/2; on the interface oG0:

8><>: ð2:41Þ

The required random motion can be defined in a manner similar to that in the previous section. Namely, at

every instant the future direction of the path ~nnt is determined by its current position x0. From a position

inside either of the domains Gn, n ¼ 1; 2, the motion continues as the Brownian walk with a drift corre-

sponding to the operator 1
2
r2 þ~AAnðx0Þ � ~rr. From a position on the external boundaries oGe

n, the motion

continues as a deterministic drift into Gn along the vector ~aanðx0Þ with a time scale corresponding to the
reflection from the boundary discussed above. From a position on the interface oG0 the motion continues

with the probability p1 as a deterministic drift into G1 along the vector ~ee1ðx0Þ, or it continues with the

probability p2 as a deterministic drift into G2 along the vector ~ee2ðx0Þ. The time scale of the drift into the

domains Gn, corresponds to the problem inside Gn with the boundary conditions pn~een � ~rr/n � b0/n þ f0 ¼
0, formulated as if the other domain did not exist.

The motion corresponding to the problem (2.37)–(2.40) can also be introduced as a continuous solution
~nnx
t of the stochastic differential equation

d~nnx
t ¼ d~wwt þ

X2
n¼1

~AAndKn
t

�
þ~aandkn

t

�
þ pmt~eemtdk0

t ; ð2:42Þ

with initial conditions

~nnx
0 ¼ x; K1;2

0 ¼ k0;1;2
0 ¼ 0; and m0 ¼ n; if x 2 Gn: ð2:43Þ

where Kn
t , n ¼ 1; 2, are the local times in the domains Gn, kn

t are the local times on the exterior boundaries

oGe
n, and k0

t is the local time on the interface oG0. This equation has five unknown stochastic processes

(random functions): the path~nnx
t , local times k0

t , k
1
t , k

2
t , and a random index mt, which changes its value at the

instants when the path ~nnx
t touches the interface oG0 taking the values m ¼ 1 or m ¼ 2 with probabilities p1

and p2 that are functions defined on the interface oG0. Solutions of the stochastic differential equation (2.42)

can be approximated by discrete random walks similar to that discussed in the previous section as ap-

proximations of the Brownian motion with reflections described by the stochastic equation (2.20).
When stochastic functions satisfying (2.42) and, consequently, (2.41), are found, then the solution of the

problem (2.37)–(2.40) can be represented by the formula (2.2) with F and B replaced by F and B, defined,

together with the global time tt, by the formulas

B ¼
Bn;

bt;
b0;

8<: F ¼
Fn;
Ft;
f0;

8<: tt ¼
Kn

t ; if ~nnx
t 2 Gn;

kn
t ; if ~nnx

t 2 oGe
n;

k0
t ; if ~nnx

t 2 oG0;

8><>: ð2:44Þ
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depending on the current location of the path~nnx
t with respect to the domain G1;2, their external boundaries

oGe
1;2, and the interface oG0.

Fig. 7 displays some numerical results demonstrating the efficiency of the probabilistic solution of the

problem (2.37)–(2.40). We recover function

/ðx; yÞ ¼ x2 � y2 þ 4CðyÞxy; where CðyÞ ¼ 2 if y > 0;
1 if y < 0;

�
ð2:45Þ

in the disk x2 þ y2 6 1 considering it as the solution of the equation r2/ ¼ 0 in domains y > 0 and y < 0,

satisfying the interface condition

3
o/
oy

����
y¼0þ

� o/
oy

����
y¼0�

¼ 4x 3Cð1Þ½ � Cð�1Þ� � 20x;

on the line y ¼ 0, and meeting predefined values on the circle x2 þ y2 ¼ 1. The probabilistic solution /ðx; yÞ
along the circle x2 þ y2 ¼ 1

4
is plotted by a solid line while the dashed line presents exact values of this

function. The results were obtained by averaging over 4000 discrete random walks with the space increment

e ¼ 0:025.

3. Probabilistic solutions of the Helmholtz equation

3.1. The Dirichlet problem for the Helmholtz equation

Consider the boundary value problem

r2w þ k2,2ðxÞw ¼ 0; wjoG ¼ w0; x 2 G � RN ; ð3:1Þ

for the N-dimensional Helmholtz equation with a positive wave number j � k,ðxÞ > 0 subdivided for

future convenience into two multiplicative components: a variable parameter ,ðxÞ > 0 and a constant k > 0

which is often considered to be large. A typical problem of wave radiation consists of finding the solution of

(3.1) that is defined in an exterior domain G � RN and satisfies some additional conditions at infinity, most

commonly, the Sommerfeld radiation condition.

Although (3.1) is an elliptic boundary value problem similar to (2.1) its solution may not be straight-

forwardly expressed by probabilistic formulas like (2.31) because the inequality j2 > 0 leads to diver-

gent integration in (2.31). There is, however, a less straightforward way to obtain probabilistic solutions of
(3.1).

Fig. 7. Probabilistic solution of the problem (2.37)–(2.40).
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Let us seek a solution of (3.1) in the Liouville product form

wðxÞ ¼ /ðxÞe�ikSðxÞ; ð3:2Þ

which has been used since the early 1800s as an anzatz for exact and approximate solutions of partial and

ordinary differential equations. Then, the Helmholtz equation from (3.1) can be split into two equations

ð ~rrSÞ2 ¼ ,2; ð3:3Þ

i

2
r2/ þ k ~rr/ � ~rrS þ k

2
ðr2SÞ/ ¼ 0; /joG ¼ w0e

ikS
��
oG
: ð3:4Þ

Eq. (3.3) is a well-known eikonal equation from ray optics (Keller, 1958; Maslov and Fedoriuk, 1981) and it

is a particular case of the Hamilton–Jacobi equation of classical mechanics (Arnold, 1978). These equations

have been exhaustively studied in the literature so we may take as granted that the eikonal SðxÞ corre-

sponding to the imposed radiation conditions at infinity is already defined either on the domain G or on a

multi-sheeted Lagrangian manifold constructed over G similar to Riemann surfaces in the theory of ana-

lytic functions.
After the eikonal equation (3.3) is solved, either in phase space or in a more general Lagrangian mani-

fold, Eq. (3.4) may be considered as a second order partial differential equation with the Dirichlet boundary

condition depending only on the boundary values /0 and the eikonal SðxÞ. Eqs. (3.3) and (3.4) together are

equivalent to the Helmholtz equation (3.1), but Eq. (3.4) considered with an already defined eikonal SðxÞ
has been widely used as a starting point of different approximate approaches to the general wave radiation

problem.

If k � 1, one may neglect in (3.4) the first term and arrive at the ‘transport’ equation 2 ~rrS � r/þ
ðr2SÞ/ ¼ 0, widely used in the geometrical theory of diffraction (Keller, 1958; Maslov and Fedoriuk, 1981)
for derivation of short-wave asymptotic approximations of wave fields. Another approximate approach to

Eq. (3.4) arises if instead of neglecting all of the first term in (3.4) we neglect only part of it. A broad

spectrum of ‘parabolic-equation’ methods in the theory of high-frequency wave propagation is based on

this idea, originating from the contributions of Fock and Leontovich (1965).

3.2. A probabilistic solution of the complete transport equation

Let ~AA be a vector field in an N-dimensional domain G � RN with the boundary oG and let f be a function

on oG. Then, the Dirichlet problem

i

2
r2/ þ k~AA � ~rr/ þ k

2
divð~AAÞ/ ¼ 0; /joG ¼ f ; ð3:5Þ

with a constant parameter kmay be considered as a generalization of the complete transport equations (3.4)

which, in turn, may be treated as a particular case of (3.5) with ~AA ¼ ~rrS, where S is an eikonal determined
from an independent eikonal equation (3.3).

Our approach to the problem (3.5) with a complex-valued differential operator i
2
r2 þ~AA � ~rr employs a

scheme to replace (3.5) by another Dirichlet problem with a real-valued differential operator which makes it

possible to obtain a solution in a probabilistic form similar to (2.31). This idea was partially developed

above in the analysis (2.13)–(2.16) of the Eq. (2.12) similar to (3.5), so all that is needed here is to extend the

analysis to accommodate the presence of the boundary conditions in (3.5).

Let /ð~zzÞ be an analytic function of a complex argument~zz ¼~xxþ i~yy, and consider it as a function /ð~xx;~yyÞ of
two real N-dimensional vectors ~xx, ~yy, satisfying Cauchy–Riemann conditions (2.13). Then, following the
reasoning employed in (2.12)–(2.16) we convert the equation from (3.5) with N independent variables to the

equation
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1

2

XN
n¼1

o2/
oxnoyn

þ k
XN
n¼1

ReðAnÞ
o/
oxn

�
þ ImðAnÞ

o/
oyn

�
þ k
2

XN
n¼1

oAn

oxn

 !
/ ¼ 0; ð3:6Þ

with a real-valued differential operator but with 2N independent variables.

The next step is to augment Eq. (3.6) with some Dirichlet boundary conditions in order to formulate a
boundary value problem that may be considered, in an appropriate sense, as an extension of the problem

(3.5).

Let Gc and oGc be a domain and its boundary in a complex space CN satisfying

Gc \ RN ¼ G; oGc \ RN ¼ oG; ð3:7Þ

so that the intersections of Gc and oGc with the real space RN coincide with the domain G and its boundary

oG of the Dirichlet problem (3.5). Next, assume f cð~zzÞ are the values of /ð~zzÞ on the boundary oGc. Such
f cð~zzÞ may be considered as the extension of the boundary values f ð~zzÞ from the real ðN � 1Þ-dimensional

boundary oG 2 RN onto the ð2N � 1Þ-dimensional surface oGc � CN � R2N . Then, identifying the complex

variable~zz with the pair ð~xx;~yyÞ of real variables we arrive at the boundary value problem consisting of the

Eq. (3.6) and the Dirichlet condition

/ð~xx;~yyÞj~zz2oGc ¼ f cð~xx;~yyÞ; where~zz ¼~xxþ i~yy: ð3:8Þ
Since the problem (3.6)–(3.8), has the structure of the Dirichlet problem (2.32) with 2N independent

variables xn; yn, n ¼ 1; 2; . . . ;N , its solution may be obtained from the formula (2.31) which, in the con-

sidered particular case, can be conveniently arranged into the form

/ð~xx;~yyÞ ¼ E f cð~nnx;y
s Þe�

R s

0
Bð~nnx;yt Þdt

� �
; B ¼ k

2

XN
n¼1

oAn

oxn
; ð3:9Þ

averaging random walks ~nnx;y
t launching from the point ð~xx;~yyÞ and running across the space R2N � CN ac-

cording to the real stochastic equations

Reðd~nntÞ ¼
1ffiffiffi
2

p ~wwt þ kReð~AAÞdt; Imðd~nntÞ ¼
1ffiffiffi
2

p ~wwt þ kImð~AAÞdt; ~wwt 2 RN ; ð3:10Þ

where~wwt is the standard Brownian motion in the real space RN . As for the exit time s, it is defined as the first

instant when the path ~nnz
t ¼~nnx;y

t touches the boundary oGc, which is equivalent to the condition that the

projection Reð~nnz
t Þ of the path ~nnz

t to the real space touches the boundary oG.
Since /ð~xx;~yyÞ defined by (3.9) obeys boundary conditions (3.8) it is clear that the restriction /ð~xx; 0Þ of this

function to the real space obeys the boundary condition from the original Dirichlet problem (3.5).

Therefore, to insure that /ð~xx; 0Þ solves the problem (3.5) it is sufficient to show that the equation from (3.5)

is equivalent to (3.6). But equation (3.6) was derived from (3.5) under the hypothesis that /ð~xx;~yyÞ satisfies
the Cauchy–Riemann conditions (2.13), which is equivalent to the requirement that /ð~zz; 0Þ is an analytic
function of the complex variable~zz ¼~xxþ i~yy. On the other hand, if we assume that ~AAðxÞ and f ðxÞ from (3.5)

are analytic and that f c from (3.8) analytically continues f, then the mathematical expectation (3.9), if it

converges, determines an analytic function /ð~zzÞ ¼ /ð~xxþ i~yyÞ which, consequently, obeys the complex

equation from (3.5).

So, we finally conclude that if functions ~AA and f from the problem (3.5) are analytic, and f cðzÞ is the

analytic continuation of f ðxÞ, then the solution of the Dirichlet problem (3.5) can be represented by the

probabilistic formula

/ðxÞ ¼ E f ð~nnx
sÞe

k
2

R s

0
divð~AAð~nnxt ÞÞdt

� �
; ð3:11Þ
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where ~nnx
s is the random motion defined by the stochastic differential equation

d~nnx
t ¼

ffiffi
i

p
d~wwt þ k~AAdt; ~nnx

0 ¼ x; ð3:12Þ

which is equivalent to (3.10), and s is the exit time of the projection Re ~nnx
t

� �
of the trajectory ~nnx

t from the

domain G.

It is worth noting that formulas (3.11) remain valid if the paths ~nnx
t are governed by the equations

d~nnx
t ¼ eið

p
4
þ~aa

2
Þd~wwt þ kei~aa~AAdt; ~nnx

0 ¼ x; ð3:13Þ

slightly generalizing (3.12) by the presence of an arbitrary function~aaðzÞ of the complex space argument. To

justify (3.12) it suffices to multiply (3.5) by ei~aa and to re-apply, with obvious modifications, all the reasoning

embodied in (3.6)–(3.11). In particular, it may be convenient to introduce ~aaðzÞ by the formula

~aaðzÞ ¼ p
2
� 2 argð~AAðzÞÞ; ð3:14Þ

which guarantees that the differentials of the Brownian and of the drift components of the path~nnx
t belong to

the same N-dimensional subspace eið
p
4
þ~aa

2
ÞRN of CN .

Representation (3.11) is valid for any domain Gc satisfying (3.7), but the right-hand sides of these for-

mulae depend on values of f cð~zzÞ on the surface oGc, while the boundary conditions from (3.5) specify this

function only on its intersection oG ¼ oGc \ RN with the real space. However, (3.11) may still be used for

solution of the problem (3.5), because: (a) in many cases in problems of wave propagation, such as the

numerical examples presented later on, the correct extension of the boundary values f ð~zzÞ from oG to oGc is

known a priori; (b) in many cases there is a unique continuation of the analytic boundary values f ð~zzÞ of the
problem (3.5), from the ðN � 1Þ-dimensional boundary oG to the specific ð2N � 1Þ-dimensional surface oGc.

To construct such an extension of the ðN � 1Þ-dimensional boundary oG and of the boundary values gð~zzÞ
defined on oG, assume that f ð~zzÞ and oG are both analytic, which provides a unique analytic continuation of

f ð~zzÞ onto the ð2N � 2Þ-dimensional analytic continuation oGC of oG. The integral lines of the vector field

i~AAe�2i argð~AAÞ originating from oGC form the ð2N � 1Þ-dimensional surface oGc which has a property that a

path started on oGc and defined by (3.13) and (3.14) never leaves oGc. The last property makes it possible to

compute the function /ðzÞ on oGc by the formula (3.11) with the paths~nnx
t from (3.13) and (3.14), running on

the ð2N � 1Þ-dimensional oGc and stopping on the ð2N � 2Þ-dimensional analytical continuation oGC of the

real boundary oG.
In order to illustrate the mechanism of continuation of boundary conditions, consider the one-dimen-

sional problem

i

2
/rr þ

i

2r

!
� 1

"
/r �

1

2r
/ ¼ 0; on r > 1; with /ð1Þ ¼ 1; and /ð1Þ ¼ 0;

with obvious solution / ¼ e�irH 1
0 ðrÞ=H 1

0 ð1Þ. It is clear that the paths (3.13) and (3.14), with A ¼ i
2r � 1, do

not leave the line oGc, defined on the complex plane C by the equation

dx
dt

¼ iAe�2i argðAÞ � i�AAðrÞ; rð0Þ ¼ 1:

Consequently, formula (3.11) with paths from (3.13) and (3.14) determines the solution of this problem on

the line oGc transversally crossing the real axis at r ¼ 1. After that, the same formula (3.11), but with the

paths from (3.12), determines /ðrÞ outside oGc including the real semi-axis r > 1.

If the problem (3.5) stands alone, then restriction of its solution (3.11) and (3.12) to cases with analytic

vector fields~AA and analytic boundary values f may be considered as too severe. Here, however, our interests
are limited to a particular case (3.4) of the problem (3.5) arising from the analysis of the Helmholtz
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equation (3.1) describing propagation of time-harmonic waves. In this case it is rather common to deal with
analytic eikonals S determining analytic vector fields ~AA ¼ ~rrS, and with analytic boundary conditions f

generated by analytic incident waves.

It should also be mentioned that in order to guarantee that the mathematical expectation (3.11) exists the

vector field ~AA and the domain G must satisfy certain conditions, which are discussed in detail in the lit-

erature (Freidlin, 1985).

A specific feature of the solution (3.11) is that its exponent can be converted to an alternative form which

provides a convenient way for the asymptotic analysis of /ðxÞ in the limit k � 1.

Let S be a ðN � 1Þ-dimensional surface (see Fig. 8) non-tangent to the vector field ~AA and let~nn0ðt; rÞ be a
solution of the initial value problem

d~nn0

dt
¼ ~AAð~nn0Þ; ~nn0ð0Þ ¼~rr 2 S;

parameterized by a vector ~rr ¼ ðr1;r2; . . . ; rN�1Þ. Then, the set ðt;~rrÞ may be considered as coordinates of

the point ~nn0ðt;~rrÞ, and one may introduce the function

Jð~nnÞ ¼ det V ð~nnÞ
h i

; ~nn ¼~nn0ðt;~rrÞ; V ð~nnÞ ¼ o~nn0ðt; r1; r2; . . . ; rN�1Þ
oðt; r1; r2; . . . ; rN�1Þ

; ð3:15Þ

where V ð~nnÞ is a Jacobi matrix of the transformation ðt;~rrÞ !~nn0ðt;~rrÞ. The function Jð~nnÞ from (3.15) is widely

known in the geometrical theory of diffraction (ray theory) as the ‘geometrical divergence’ of the vector field
~AA, and the Liouville theorem establishes the relationship

div ~AAð~nnÞ
h i

¼ ~rr~AAJð~nnÞ ¼
d

ds

����
s¼0

J ~nn
�

þ s~AAð~nnÞ
�
; where Jð~nnÞ ¼ ln Jð~nnÞ

h i
; ð3:16Þ

between the divergence of ~AA and the derivative of ln Jð~nnÞ
h i

along ~AA.
Taking into account (3.16) and applying some elementary stochastic calculus, we can re-arrange solution

(3.11) of the boundary value problem (3.5) to the form

/ðxÞ ¼ E f ð~nnx
sÞ

ffiffiffiffiffiffiffiffiffiffiffi
Jð~nnx

sÞ
Jð~nnx

0Þ

vuut e

R s

0

i
4
r2ðln JÞ dt�

ffi
i

p

2
~rrðln JÞ d~ww

8<:
9=;; ð3:17Þ

given in terms of a geometric characteristic Jð~nnÞ.
It should be noticed that although solution (3.17) of the problem (3.5) does not explicitly depend on the

parameter k, this parameter, nevertheless, heavily affects the solution through the structure (3.12) of the

trajectories ~nnx
t . Consider, for example, the case when k � 1. Then the speed of the drift along the vector

field ~AA is much higher than the average speed of the Brownian motion and the trajectory~nnx
t follows closely

along the ‘rays’~ffxt described by the ordinary differential equation

Fig. 8. Geometrical divergence of the vector field.
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d

dt
~ffxt ¼ ~AAð~ffxt Þ; ~ffx0 ¼ x:

Therefore, assuming that the ray~ffxt hits the boundary oG at the point xs, we get an approximation

/ðxÞ � /0ðxÞ ¼ f ðxsÞ

ffiffiffiffiffiffiffiffiffiffiffi
JðxsÞ
JðxÞ

s
; k � 1; ð3:18Þ

which, indeed, can be rigorously justified when the boundary oG, the boundary values f and the vector field
~AA satisfy some conditions of regularity.

This approximation may also be obtained as an exact solution of the equation

2~AA � ~rr/0 þ divð~AAÞ /0 ¼ 0; /0joG ¼ f ; ð3:19Þ

which may be regarded as an approximation to the problem (3.5). Equation (3.19) is well known in the

geometrical theory of diffraction (ray method) as a ‘transport equation’ because it describes the transport of

a quantity /0 along the vector field ~AA.

3.3. Numerical examples

To get an indication of the numerical efficiency of the probabilistic formulas (3.17) we consider a par-

ticular two dimensional case of (3.5) with k ¼ 1 and with the vector field~AA ¼~xx=k~xxk generated by the eikonal

SðxÞ ¼ kxk ¼ r.
Eq. (3.5) corresponding to this case takes the form 1

2
r2/ þ iðo/Þ=ðorÞ þ ið/=2rÞ ¼ 0, which has an

obvious solution /ðr; hÞ ¼ e�irH ð1Þ
0 ðrÞ, defined in any exterior domain rPR > 0. Since the vector field

~AAðr; hÞ ¼~xx=k~xxk and its geometric divergence Jðr; hÞ ¼ r are both analytic in the domain ReðrÞPR, the
probabilistic formula (3.17) can be used for simulation of the function e�irH ð1Þ

0 ðrÞ considered as the solution

of the Dirichlet problem with boundary conditions /ðR; hÞ ¼ e�iRH ð1Þ
0 ðRÞ in the domain rPR.

Fig. 9 shows the results of the numerical simulation of the function e�2pirH ð1Þ
0 ð2prÞ. This function is

computed twice: as a Hankel function and as the solution of the discussed Dirichlet problem given by the

probabilistic formula (3.17). The amplitudes of the computed functions are displayed on the first diagram,

Fig. 9. Simulation of a Hankel function by random walks.
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and the second diagram displays their phases. The last diagram presents the relative error of the proba-

bilistic solution.

The presented results correspond to the radius 2pR ¼ k=30, where k ¼ 2p is the wave length. The

mathematical expectations from (3.17) were estimated by statistical sums of the type (2.34) where the
averaging included 2000 independent discrete Brownian walks with Cartesian increments Dx ¼ Dy � 0:07.
The computations were very stable and despite the use of a rather rough discretization and the simplest

algorithms, the relative error was maintained below the low 2% level over the entire trial interval from

r ¼ 0:05 to r � 8 wave lengths.

Next we consider a classical Sommerfeld problem of diffraction in a wedge, which consists of finding the

solution of the Helmholtz equation r2w þ k2w ¼ 0, defined in a wedge jhj6 a with the Dirichlet boundary

conditions wðr;	aÞ ¼ 0 imposed on its faces. The excitation is generated by the incident plane wave

wiðr; hÞ ¼ e�ikr cosðh�h0Þ; jh0j < a;

arriving from infinity along the ray h ¼ h0, and except for this incident wave there should be no other waves
arriving from infinity. The last condition can be formalized as a requirement that the solution wðr; hÞ admits

the decomposition

wðr; hÞ ¼ wgðr; hÞ þ wdðr; hÞ; ð3:20Þ

into a ‘geometrical’ component wgðr; hÞ, which includes the incident wave as well as a finite number of plane

reflected waves generated according to the laws of geometrical optics, and a diffracted component wdðr; hÞ
satisfying the Sommerfeld radiation condition at infinity.

The geometrical field wgðr; hÞ can be defined without any prior knowledge of the diffracted field by the

Sommerfeld integral

wgðr; hÞ ¼
1

2pi

Z
C

Wgðh
,

� x þ pÞ � Wgðh þ x � pÞ
-
eikr cosxdx; ð3:21Þ

taken along the standard
S
-like contour of integration C passing from p

2
þ i1 to 3p

2
þ i1. The amplitude

function WgðxÞ can be defined as a finite sum of rational functions:

WgðxÞ ¼
XM2

m¼M1

1

x � h0 � 4am

�
� 1

x � h0 � 4am� 2a

�
; ð3:22Þ

where M1 and M2 are any integers satisfying the inequalities M2 >
p�h0
4a and M1 < � 2aþh0

4a .

The diffracted field has the structure wdðr; hÞ ¼ eikr/dðr; hÞ, with the eikonal S ¼ r and with the factor

/dðr; hÞ satisfying in the wedge jhj < a the complete transport equations (3.5) with the boundary conditions

/dðr;	aÞ ¼ gðr;	aÞ � �/gðr;	aÞe�ikr: ð3:23Þ

Since the field /dðr; hÞ is defined as the solution of the boundary value problem of the type (3.5) it can be

computed by a probabilistic formula (3.17) which leads to the solution of the Sommerfeld problem of

diffraction computed by the random walk method. On the other hand, the exact solution of this problem
can be represented by the Sommerfeld integral

wðr; hÞ ¼ 1

2pi

Z
C

Wðh½ � x þ pÞ � Wðh þ x � pÞ�; eikr cosxdx; ð3:24Þ

similar to (3.22) but with a different amplitude function:

WðxÞ ¼ p
4a

cot
p
4a

ðx
hn

� h0Þ
i
þ tan

p
4a

ðx
h

þ h0Þ
io

: ð3:25Þ
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So, the Sommerfeld problem of diffraction in a wedge provides another opportunity to compare solu-

tions obtained by the random walk method with the exact solutions represented by conventional quadr-
atures.

Fig. 10 shows the results of the numerical simulation of the wave field wð2pr; hÞ from (3.24) and (3.25)

generated in a wedge by an incident plane wave. This field is computed twice: by direct numerical inte-

gration in (3.24) and (3.25), and through the probabilistic simulation of the diffracted component /dðr; hÞ of
the total wave field.

The presented results correspond to the wedge jhj < 135� with the incident wave arriving along the di-

rection h0 ¼ 90�. Solid lines display the wave field along the ray h ¼ 30� which is exposed to the incident,

reflected and diffracted waves. Dashed lines correspond to the ray h ¼ �30� which is exposed to the in-
cident, and diffracted waves. Dotted lines correspond to the ray h ¼ �120� exposed only to the diffracted

waves. Computations using random walks with the same parameters as in the previous examples were

stable and the relative difference between the diffracted fields computed by the different methods was below

the 3% level on the entire wavelength interval of computation (0.05, 8).

3.4. Wave propagation in two media

In the above we discussed the application of the random walk method to the computation of solu-

tions of the Helmholtz equation in a single medium, and in Section 2.4 we discussed the application of

this method to differential equations formulated in two adjacent media with some interface bound-

ary conditions imposed. Comparing the presented material it is easy to see that these two cases may

be combined, which results in the possibility of employing probabilistic methods for the analysis of

wave propagation through several media. Here we consider a rather simple but, nevertheless, represen-

tative case of wave propagation in a space which comprises two half-spaces with different wave
speeds.

Fig. 10. Probabilistic solution of the Sommerfeld diffraction problem.
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Let a plane ðx; yÞ be subdivided by the line y ¼ 0 on two half-spaces G1 ¼ fx; y : y > 0g and G2 ¼
fx; y : y < 0g occupied by different wave conducting media. Consider a plane wave

wi
1 ¼ eik1ðx cos h0þy sin h0Þ; 0 < h0 < p; ð3:26Þ

propagating in the half-space G1 in the direction from infinity towards the interface y ¼ 0 separating G1

from G2. The interaction of this wave with the interface causes the excitation of secondary waves w1 and w2,

which are radiated to the domains G1 and G2, respectively. The wave w1 radiated to G1 is usually referred to

as the reflected wave, while the wave w2 radiated to G2 is referred to as the transmitted or refracted wave.

The goal of the present section is to compute the reflected and transmitted waves by the probabilistic

method.

More precisely, the problem considered here is to compute functions w1;2 which are defined in the do-

mains G1;2, and satisfy the Helmholtz equations

r2w1 þ k21w1 ¼ 0; in y > 0;

r2w2 þ k22w2 ¼ 0; in y < 0
ð3:27Þ

with different wave numbers k1;2. Additionally, functions /1;2 must satisfy the interface conditions

ðwi
1 þ w1Þ

��
y¼0

¼ w2jy¼0; ð3:28Þ

o

oy

����
y¼0

ðwi
1 þ w1Þ ¼

o

oy

����
y¼0

w2; ð3:29Þ

and must obey the radiation conditions in the corresponding domains G1;2.

We seek solutions w1;2 in the form

w1 ¼ /1 e�ik1S1 ; w2 ¼ ð1þ /2Þ e�ik2S2 ; ð3:30Þ

with the eikonals

Sn ¼ x cos hn þ y sin hn; ð3:31Þ

whose angles

h1 ¼ �h0; h2 ¼ arccos
k1
k2

cos h0

! "
ð3:32Þ

are determined by the direction h0 of the incident wave from (3.26). Then, comparing (3.27) with (3.30)–

(3.32) we find that the new unknown functions /1;2 must satisfy equations

i

2
r2/n þ kn~een � ~rr/n þ

1

2
kn/n ¼ 0; ð3:33Þ

with the unit vectors

~ee1 ¼ ðcos h1; sin h1Þ; ~ee2 ¼ ðcos h2; sin h2Þ; ð3:34Þ

and these functions are coupled through the interface conditions

/1 � /2 ¼ 0; ð3:35Þ

i
o

oy
/1

!
� o

oy
/2

"
þ k1 sin h1/1 � k2 sin h2/2 ¼ k1 sin h1 þ k2 sin h2; ð3:36Þ

imposed on the line y ¼ 0.
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Problem (3.33)–(3.36) has an obvious solution

/1 ¼ /2 ¼
k1 sin h1 þ k2 sin h2

k1 sin h1 � k2 sin h2

¼ k1 sin h0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k21 cos2 h2

p
k1 sin h0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k21 cos2 h2

p ;

from which it follows that the solution w1;2 of the original problem (3.27)–(3.29) has the structure

wn ¼ Kn e�iknSn ; ð3:37Þ

where the reflection coefficient K1 and the transmission coefficient K2 are explicitly determined as

K1 ¼
sin h0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � cos2 h2

p
sin h0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � cos2 h2

p ; K2 ¼
�2 sin h0

sin h0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � cos2 h2

p ; c ¼ k1
k2
: ð3:38Þ

On the other hand, problem (3.33)–(3.36) is of the type (2.37)–(2.40) discussed in Section 2.4 as an

example of problems admitting explicit probabilistic solutions. Therefore, applying the scheme of the

random walk method described in Section 2.4 we can compute the reflection and transmission coefficients
K1, K2 satisfying (3.37), and comparing the simulated results with exact values known from (3.38) we get

another opportunity to justify the efficiency of the random walk approach to problems of wave propa-

gation.

Fig. 11 shows results of the probabilistic computations of the reflection coefficients K1 for different plane

incident waves. These coefficients are computed twice: by direct evaluation of (3.38) and through the

probabilistic solution of the problem (3.33)–(3.36). The presented results correspond to the case when the

upper half space has the wave number k1 ¼ 1:5 and the wave number of the lower half space is k2 ¼ 1,

which means that waves propagate in the lower domain 1:5 time faster than in the upper domain. The
reflected field was computed at the point x ¼ ð0; 0:5Þ by the probabilistic formula where the mathematical

Fig. 11. Simulation of the reflection coefficient K1.
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expectations were computed by averaging 1000 independent discrete random walks with the spatial in-

crement e ¼ 0:05. The computations were stable and the absolute error was in the range 0.01–0.02 for most

of the incident angles.

4. Conclusion

The results presented here show that the synthesis of the ray method and the probabilistic methods

provides a promising approach to problems of wave propagation which may be used both for effective
numerical evaluations and for asymptotic analysis. The advantages of this combination include, but are not

limited to: physical meaningfulness is retained from the ray theory; versatility and minimal requirements of

the problem’s data; numerical implementations may employ simple and scalable parallel algorithms with

minimal use of computer memory.

Here we explored basic ideas of the developing method and considered examples illustrating its appli-

cations to scalar problems with general first-order boundary conditions and to scalar problems formulated

in adjacent domains. In future papers we will extend the approach to vector problems of elastodynamics

and electromagnetics and apply the method to diffraction problems as yet unsolved by other methods.
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